精英家教网 > 高中数学 > 题目详情
20.若函数f(x)=3x+1+m•3-x为R上的奇函数,则f($\frac{m}{3}$)的值为-8.

分析 根据奇函数的特性,可得f(0)=0,进而代入可得m的值,即可求出f($\frac{m}{3}$)的值.

解答 解:若函数f(x)=3x+1+m•3-x为R上的奇函数,
则f(0)=3+m=0,
解得:m=-3,
当m=-3时,f(x)=3x+1-3•3-x满足f(-x)=-f(x)恒成立,
∴f($\frac{m}{3}$)=f(-1)=1-9=-8
故答案为:-8.

点评 本题考查的知识点是函数的奇偶性,其中熟练掌握奇函数的特性,即在x=0时有意义的奇函数图象必过原点,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\sqrt{3}$,实轴长为2
(Ⅰ)求双曲线C的方程;
(Ⅱ)设直线l是圆O:x2+y2=2上动点P(x0,y0)(x0y0≠0)处的切线,l与双曲线C交于不同的两点A,B,证明∠AOB的大小为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知命题p:函数f(x)=lg(ax2-4x+a)的定义域为R;命题q:函数g(x)=2|x-a|在区间(3,+∞)上单调递增.
(1)若p为真命题,求实数a的取值范围;
(2)如果命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知正方体ABCD-A1B1C1D1,E是棱CD中点,则直线A1E与直线BC1所成角的余弦值为(  )
A.$\frac{{2\sqrt{2}}}{3}$B.$\frac{1}{3}$C.$\frac{{\sqrt{3}}}{3}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}x+2,x≥2\\{x^2},0≤x<2\end{array}$,则f(f(${\frac{3}{2}}$))=(  )
A.$\frac{9}{4}$B.$\frac{7}{2}$C.$\frac{17}{4}$D.$\frac{81}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.椭圆6x2+y2=6的长轴端点坐标为(  )
A.(-1,0),(1,0)B.(-6,0),(6,0)C.$(-\sqrt{6},0),(\sqrt{6},0)$D.$(0,-\sqrt{6}),(0,\sqrt{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=$\left\{\begin{array}{l}{{3}^{x}-a,x<1}\\{π(x-3a)(x-2a),x≥1}\end{array}\right.$,若f(x)恰有2个零点,则实数a的取值范围是$[\frac{1}{3},\frac{1}{2})$∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知实数a≠0,函数f(x)=$\left\{\begin{array}{l}2x+a,x<1\\-x-2a,x≥1\end{array}$,若f(1-a)=f(1+a),则a的值为(  )
A.-$\frac{3}{2}$B.-$\frac{3}{4}$C.-$\frac{3}{4}$或-$\frac{3}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.写出命题:“若一个四边形两组对边相等,则这个四边形为平行四边形”的逆否命题是若一个四边形不是平行四边形,则这个四边形的两组对边不都相等.

查看答案和解析>>

同步练习册答案