精英家教网 > 高中数学 > 题目详情
8.已知正方体ABCD-A1B1C1D1,E是棱CD中点,则直线A1E与直线BC1所成角的余弦值为(  )
A.$\frac{{2\sqrt{2}}}{3}$B.$\frac{1}{3}$C.$\frac{{\sqrt{3}}}{3}$D.0

分析 令正方体ABCD-A1B1C1D1的棱长为1,建立空间坐标系,利用向量法,可得直线A1E与直线BC1所成角的余弦值.

解答 解:令正方体ABCD-A1B1C1D1的棱长为1,
建立如图所示的坐标系,
则$\overrightarrow{{BC}_{1}}$=(1,0,1),$\overrightarrow{{A}_{1}E}$=(1,-$\frac{1}{2}$,-1),
则直线A1E与直线BC1所成角θ的余弦值为:
cosθ=$\frac{|\overrightarrow{{BC}_{1}}•\overrightarrow{{A}_{1}E}|}{\left|\overrightarrow{{BC}_{1}}\right|•\left|\overrightarrow{{A}_{1}E}\right|}$=0,
故选:D.

点评 本题考查的知识点是空间中直线与直线的位置关系,异面直线及其所成的角,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.定义在(0,$\frac{π}{2}$)上的函数f(x),f′(x)是它的导函数,且恒有f(x)<f′(x)tanx成立.则下列不等关系成立的是(  )
A.$\sqrt{3}$•f($\frac{π}{6}$)>2cos1•f(1)B.$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$)C.$\sqrt{6}$f($\frac{π}{6}$)>2f($\frac{π}{4}$)D.$\sqrt{2}$f($\frac{π}{4}$)>f($\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)是定义在R上的奇函数,且f(x+$\frac{3}{2}$)=-f(x),当x∈(-2,0)时f(x)=2x,则f(2014)+f(2015)+f(2016)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}-x,x∈[{-1,0})\\ \frac{1-f(x-1)}{f(x-1)},x∈[{0,1})\end{array}\right.$,若方程f(x)-kx+k=0 有二个不同的实数根,则实数k的取值范围是(  )
A.$({-1,-\frac{1}{2}}]$B.$[{-\frac{1}{2},0})$C.[1,+∞)D.$[{-\frac{1}{2},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.过点作(3,2)圆(x-1)2+y2=1的两条切线,切点分别为A、B,则直线AB的方程为(  )
A.2x+2y-3=0B.x+2y-3=0C.2x+y-3=0D.2x+2y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合P={1,2,3},则集合P的真子集个数为(  )个.
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=3x+1+m•3-x为R上的奇函数,则f($\frac{m}{3}$)的值为-8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在锐角△ABC中,a,b,c是角A,B,C的对边$\sqrt{3}$sinC-cosB=cos(A-C).
(1)求角A的度数;
(2)若a=2$\sqrt{3}$,且△ABC的面积是3$\sqrt{3}$,求b+c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$是空间的一个基底,其中与向量$\overrightarrow a+\overrightarrow b$,$\overrightarrow a-\overrightarrow b$一定构成空间另一个基底的向量是(  )
A.$\overrightarrow a$B.$\overrightarrow b$C.$\overrightarrow c$D.$\overrightarrow a,\overrightarrow b,\overrightarrow c$都不可以

查看答案和解析>>

同步练习册答案