精英家教网 > 高中数学 > 题目详情
17.在锐角△ABC中,a,b,c是角A,B,C的对边$\sqrt{3}$sinC-cosB=cos(A-C).
(1)求角A的度数;
(2)若a=2$\sqrt{3}$,且△ABC的面积是3$\sqrt{3}$,求b+c.

分析 (1)由cos B+cos (A-C)=$\sqrt{3}$sin C,利用两角和与差的三角函数展开可求sin A,进而可求A.
(2)由三角形的面积公式可求bc的值,进而利用余弦定理,平方和公式即可解得b+c的值.

解答 解:(1)因为由已知可得:cos B+cos (A-C)=$\sqrt{3}$sin C,
所以:-cos (A+C)+cos (A-C)=$\sqrt{3}$sin C,
可得:2sin A sin C=$\sqrt{3}$sinC,
故可得:sin A=$\frac{\sqrt{3}}{2}$.
因为△ABC为锐角三角形,
所以A=60°.
(2)∵A=60°,△ABC的面积是3$\sqrt{3}$=$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}}{4}$bc,
∴bc=12,
∵a=2$\sqrt{3}$,
∴由余弦定理a2=b2+c2-2bccosA,可得:12=b2+c2-bc=(b+c)2-3bc=(b+c)2-36,
∴解得:b+c=4$\sqrt{3}$.

点评 本题主要考查了两角和与差的三角函数,余弦定理及三角形的面积公式在解三角形中的综合应用,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.F是椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦点,A(1,1)为椭圆内一定点,P为椭圆上一动点.则|PA|+|PF|的最小值为(  )
A.1B.2C.4-$\sqrt{5}$D.4+$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知正方体ABCD-A1B1C1D1,E是棱CD中点,则直线A1E与直线BC1所成角的余弦值为(  )
A.$\frac{{2\sqrt{2}}}{3}$B.$\frac{1}{3}$C.$\frac{{\sqrt{3}}}{3}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.椭圆6x2+y2=6的长轴端点坐标为(  )
A.(-1,0),(1,0)B.(-6,0),(6,0)C.$(-\sqrt{6},0),(\sqrt{6},0)$D.$(0,-\sqrt{6}),(0,\sqrt{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=$\left\{\begin{array}{l}{{3}^{x}-a,x<1}\\{π(x-3a)(x-2a),x≥1}\end{array}\right.$,若f(x)恰有2个零点,则实数a的取值范围是$[\frac{1}{3},\frac{1}{2})$∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若数列{an}中的项都满足a2n-1=a2n<a2n+1(n∈N*),则称{an}为“阶梯数列”.
(1)设数列{bn}是“阶梯数列”,且b1=1,b2n+1=9b2n-1(n∈N*),求b2016
(2)设数列{cn}是“阶梯数列”,其前n项和为Sn,求证:{Sn}中存在连续三项成等差数列,但不存在连续四项成等差数列;
(3)设数列{dn}是“阶梯数列”,且d1=1,d2n+1=d2n-1+2(n∈N*),记数列{$\frac{1}{{d}_{n}{d}_{n+2}}$}的前n项和为Tn,问是否存在实数t,使得(t-Tn)(t+$\frac{1}{{T}_{n}}$)<0对任意的n∈N*恒成立?若存在,请求出实数t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知实数a≠0,函数f(x)=$\left\{\begin{array}{l}2x+a,x<1\\-x-2a,x≥1\end{array}$,若f(1-a)=f(1+a),则a的值为(  )
A.-$\frac{3}{2}$B.-$\frac{3}{4}$C.-$\frac{3}{4}$或-$\frac{3}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)的定义域为D,若对于任意的x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设f(x)在[0,1]上为非减函数,且满足以下三个条件:
(1)f(0)=0;(2)f(${\frac{x}{3}}$)=$\frac{1}{2}$f(x);
(3)f(1-x)=1-f(x).
则f(1)+f(${\frac{1}{2}}$)+f(${\frac{1}{3}}$)+f(${\frac{1}{6}}$)+f(${\frac{1}{7}}$)+f(${\frac{1}{8}}$)=$\frac{11}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)的定义域为[-1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示,下列关于函数f(x)的命题:
x-1045
f(x)1221
(1)函数y=f(x)是周期函数;
(2)函数f(x)在(0,2)上是减函数;
(3)如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
(4)当1<a<2时,函数y=f(x)-a有4个零点.
其中真命题的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案