精英家教网 > 高中数学 > 题目详情
1.不等式组$\left\{\begin{array}{l}{2x+y-3≤0}\\{3x-y+3≥0}\\{x-2y+1≤0}\end{array}\right.$的解集记为D,有下面四个命题:
p1:?(x,y)∈D,2x+3y≥-1;   
p2:?(x,y)∈D,2x-5y≥-3;
p3:?(x,y)∈D,$\frac{y-1}{2-x}$≤$\frac{1}{3}$;      
p4:?(x,y)∈D,x2+y2+2y≤1.
其中的真命题是(  )
A.p1,p2B.p2,p3C.p2,p4D.p3,p4

分析 画出约束条件不是的可行域,利用目标函数的几何意义,求出范围,判断选项的正误即可.

解答 解:不等式组$\left\{\begin{array}{l}{2x+y-3≤0}\\{3x-y+3≥0}\\{x-2y+1≤0}\end{array}\right.$的可行域如图:

p1:B(-1,0)点,2x+3y=-2,
故?(x,y)∈D,2x+3y≥-1为假命题;   
p2:B(-1,0)点,2x-5y=-2,
故?(x,y)∈D,2x-5y≥-3为真命题;
p3:A(0,3)点,$\frac{y-1}{2-x}$=1,
故?(x,y)∈D,$\frac{y-1}{2-x}$≤$\frac{1}{3}$为假命题;      
p4:B(-1,0)点,x2+y2+2y=1
故?(x,y)∈D,x2+y2+2y≤1为真命题.
可得选项p2,p4正确.
故选:C

点评 本题考查线性规划的解得应用,命题的真假的判断,正确画出可行域以及目标函数的几何意义是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.某企业共有3 200名职工,其中青、中、老年职工的比例为3:5:2.若从所有职工中抽取一个容量为400的样本,则采用哪种抽样方法更合理?青、中、老年职工应分别抽取多少人?每人被抽取的可能性相同吗?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知椭圆$\frac{x^2}{25}+\frac{y^2}{16}=1$与双曲线$\frac{x^2}{m}-\frac{y^2}{8}=1$有共同的焦点F1,F2,两曲线的一个交点为P,则$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=x2-ax+b(a、b∈R),A={x∈R|f(x)-x=0},B={x∈R|f(x)-ax=0},若A={1,-3},试用列举法表示集合B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
(注:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)
(1)求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)试预测加工10个零件需要多少小时?
(3)此回归方程拟合效果如何?
零件个数x(个)2345
加工时

]y(小时)
2.5344.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为${s_n}={n^2}-7n$
(1)求数列{an}的通项公式,并判断{an}是不是等差数列,如果是求出公差,如果不是说明理由
(2)求数列{|an|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设p:方程x2+mx+1=0有两个不等的实根,q:方程2x2+2(m-2)x+$\frac{1}{2}$=0无实根,当“p或q为真,p且q为假”时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在等差数列{an}中,a4=1,a7+a9=16,a12=(  )
A.31B.30C.16D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某三棱锥的三视图如图所示,则该三棱锥的体积为(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.2D.$\frac{8}{3}$

查看答案和解析>>

同步练习册答案