精英家教网 > 高中数学 > 题目详情
11.某企业共有3 200名职工,其中青、中、老年职工的比例为3:5:2.若从所有职工中抽取一个容量为400的样本,则采用哪种抽样方法更合理?青、中、老年职工应分别抽取多少人?每人被抽取的可能性相同吗?

分析 由于中、青、老年职工的比例不同,故用分层抽样的方法更合理,确定抽样比是$\frac{400}{3200}$=$\frac{1}{8}$,即可求出抽取的职工数.

解答 解:因为总体由差异明显的三部分(青、中、老年)组成,所以采用分层抽样的方法更合理.
由样本容量为400,总体容量为3 200可知,抽样比是$\frac{400}{3200}$=$\frac{1}{8}$,所以每人被抽到的可能性相同,均为$\frac{1}{8}$.
因为青、中、老年职工的比例是3:5:2,所以应分别抽取:
青年职工400×$\frac{3}{10}$=120(人);
中年职工400×$\frac{5}{10}$=200(人);
老年职工400×$\frac{2}{10}$=80(人).

点评 本题考查了分层抽样,分层抽样中每个个体被抽取的可能性是相等的,每一层被抽取的比例数相等,此题是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.(1)已知数列{an}满足lgxn+1=1+lgxn(n∈N*)且x1+x2+…+x100=1,求lg(x101+x102+…+x200)的值;
(2)已知数列{an}满足a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+…+$\frac{{a}_{n}}{n}$=2n,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=2x,则有
①2是函数f(x)的周期;
②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;
③函数f(x)的最大值是1,最小值是0.
其中所有正确的命题的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax2+(1-a)x-1-lnx,a∈R.
(1)若函数在区间(2,4)上存在单调递增区间,求a的取值范围;
(2)求函数的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列不等式中,正确的是(  )
A.若x∈R,则$x+\frac{4}{x}≥4$B.若x∈R,则${x^2}+2+\frac{1}{{{x^2}+2}}≥2$
C.若x∈R,则${x^2}+1+\frac{1}{{{x^2}+1}}≥2$D.若a、b为正实数,则$\frac{{\sqrt{a}+\sqrt{b}}}{2}≥\sqrt{ab}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知圆C关于直线x-y+1=0对称的圆的方程为:(x-1)2+(y-1)2=1,则圆C的方程为(  )
A.x2+(y+2)2=1B.(x-2)2+y2=1C.x2+(y-2)2=1D.(x-2)2+y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.数列{an}满足a1=1,$\sqrt{\frac{1}{{{a_n}^2}}+2}$=$\frac{1}{{{a_{n+1}}}}$,数列{an2}的前n项和记为Sn,若有S2n+1-Sn≤$\frac{t}{20}$对任意的n∈N*恒成立,则正整数t的最小值为17.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x-$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$-4,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.不等式组$\left\{\begin{array}{l}{2x+y-3≤0}\\{3x-y+3≥0}\\{x-2y+1≤0}\end{array}\right.$的解集记为D,有下面四个命题:
p1:?(x,y)∈D,2x+3y≥-1;   
p2:?(x,y)∈D,2x-5y≥-3;
p3:?(x,y)∈D,$\frac{y-1}{2-x}$≤$\frac{1}{3}$;      
p4:?(x,y)∈D,x2+y2+2y≤1.
其中的真命题是(  )
A.p1,p2B.p2,p3C.p2,p4D.p3,p4

查看答案和解析>>

同步练习册答案