精英家教网 > 高中数学 > 题目详情
13.已知M,N是两个集合,定义集合N*M={x|x=y-z,y∈N,z∈M},若M={0,1,2},N={-2,-3},则N*M=(  )
A.{2,3,4,5}B.{0,-1,-2,-3}C.{1,2,3,4}D.{-2,-3,-4,-5}

分析 结合集合的定义进行运算即可.

解答 解:定义集合N*M={x|x=y-z,y∈N,z∈M},M={0,1,2},N={-2,-3},
∴N*M={-2,-3,-4,-5},
故选:D.

点评 本题是关于集合运算的创新题,具有一定的新意.要求学生对新定义的N*M有充分的理解才能正确答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知sin$\frac{α}{2}$=$\frac{1}{3}$,α∈(0,π),求sinα,cosα,tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.与-$\frac{π}{2}$终边相同的角是(  )
A.$\frac{π}{2}$B.πC.$\frac{3π}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示为函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤$\frac{π}{2}$)的部分图象,其中A,B两点之间的距离为5,那么f(-1)=(  )
A.-1B.-$\sqrt{3}$C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知某企业的月平均利润增长率为a,则该企业利润年增量长率为(1+a)12-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\frac{lnx+4}{x}$,求曲线f(x)在点(1,f(1))处的切线方程3x+y-7=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=1+2sin(2x-$\frac{π}{3}$).

(1)用五点法作图作出f(x)在x∈[0,π]的图象;
(2)求f(x)在x∈[$\frac{π}{4}$,$\frac{π}{2}$]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=$\left\{\begin{array}{l}{x(1-x),0≤x≤1}\\{sinπx,1<x≤2}\end{array}\right.$,则$f(f({\frac{41}{6}}))$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义运算$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,若$|\begin{array}{l}{sinθ}&{2}\\{cosθ}&{1}\end{array}|$=0,则$\frac{sinθ+cosθ}{sinθ-cosθ}$3.

查看答案和解析>>

同步练习册答案