精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=1+2sin(2x-$\frac{π}{3}$).

(1)用五点法作图作出f(x)在x∈[0,π]的图象;
(2)求f(x)在x∈[$\frac{π}{4}$,$\frac{π}{2}$]的最大值和最小值.

分析 (1)列表,描点,连线即可利用“五点作图法”画出函数y=f(x)在[0,π]上的图象.
(2)利用x的范围,可求$\frac{π}{6}$≤2x-$\frac{π}{3}$≤$\frac{2π}{3}$,根据正弦函数的图象和性质即可得解其最值.

解答 解:(1)列表如下:

x0$\frac{π}{6}$$\frac{5π}{12}$$\frac{2π}{3}$$\frac{11π}{12}$π
 2x-$\frac{π}{3}$ -$\frac{π}{3}$0$\frac{π}{2}$π$\frac{3π}{2}$$\frac{5π}{3}$ 
 y1-$\sqrt{3}$13 0-11-$\sqrt{3}$
对应的图象如下:

(2)∵f(x)=1+2sin(2x-$\frac{π}{3}$),
又∵x∈[$\frac{π}{4}$,$\frac{π}{2}$],
∴$\frac{π}{6}$≤2x-$\frac{π}{3}$≤$\frac{2π}{3}$,即2≤1+2sin(2x-$\frac{π}{3}$)≤3,
∴f(x)max=3,f(x)min=2.

点评 本题主要考查三角函数的图象和性质,五点法作函数y=Asin(ωx+φ)的图象,要求熟练掌握五点作图法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.求下列各函数的导数.
(1)y=(3x2-4x)(2x+1);
(2)y=x2sinx;
(3)y=$\frac{lnx}{{x}^{2}+1}$;
(4)y=($\sqrt{x}$+1)($\frac{1}{\sqrt{x}}$-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知cosα=0.68,求sinα,tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知M,N是两个集合,定义集合N*M={x|x=y-z,y∈N,z∈M},若M={0,1,2},N={-2,-3},则N*M=(  )
A.{2,3,4,5}B.{0,-1,-2,-3}C.{1,2,3,4}D.{-2,-3,-4,-5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知sinαcosα=$\frac{1}{8}$,且α是第三象限角.
求$\frac{{1-{{cos}^2}α}}{{cos(\frac{3π}{2}-α)+cosα}}$+$\frac{{sin(α-\frac{7π}{2})+sin(2017π-α)}}{{{{tan}^2}α-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知集合A={-3,-1,1,2},集合B=[0,+∞),则A∩B={1,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.(1-x+x210的展开式中x3的系数为(  )
A.-30B.30C.-210D.210

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=x-lnx在其极值点处的切线方程为y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面上任画一向量$\overrightarrow{a}$,求作下列向量:
(1)$\overrightarrow{AB}$=2$\overrightarrow{a}$,$\overrightarrow{AB}$=-2$\overrightarrow{a}$;
(2)$\overrightarrow{EF}$=$\frac{3}{2}$$\overrightarrow{a}$,$\overrightarrow{GH}$=-$\frac{3}{2}$$\overrightarrow{a}$;
(3)$\overrightarrow{OP}$=$\overrightarrow{a}$+0.8$\overrightarrow{a}$-1.2$\overrightarrow{a}$.

查看答案和解析>>

同步练习册答案