精英家教网 > 高中数学 > 题目详情
10.已知集合A={-3,-1,1,2},集合B=[0,+∞),则A∩B={1,2}.

分析 由A与B,求出两集合的交集即可.

解答 解:∵A={-3,-1,1,2},B=[0,+∞),
∴A∩B={1,2},
故答案为:{1,2}.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.求下列函数的导数:
(1)y=exsinx;
(2)y=x(x2+$\frac{1}{x}$+$\frac{1}{{x}^{3}}$);
(3)y=x-sin$\frac{x}{2}$cos$\frac{x}{2}$;
(4)y=$\frac{1-x}{x}$+lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示为函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤$\frac{π}{2}$)的部分图象,其中A,B两点之间的距离为5,那么f(-1)=(  )
A.-1B.-$\sqrt{3}$C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\frac{lnx+4}{x}$,求曲线f(x)在点(1,f(1))处的切线方程3x+y-7=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=1+2sin(2x-$\frac{π}{3}$).

(1)用五点法作图作出f(x)在x∈[0,π]的图象;
(2)求f(x)在x∈[$\frac{π}{4}$,$\frac{π}{2}$]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ln(a+x)在点(0,f(0))处的切线斜率为1.
(1)求实数a的值;
(2)证明:f(x)≤x;
(3)证明:f($\frac{1}{{1}^{2}}$)+f($\frac{1}{{2}^{2}}$)+f($\frac{1}{{3}^{2}}$)+…+f($\frac{1}{{n}^{2}}$)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=$\left\{\begin{array}{l}{x(1-x),0≤x≤1}\\{sinπx,1<x≤2}\end{array}\right.$,则$f(f({\frac{41}{6}}))$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若m>0,曲线f(x)=2mx+$\frac{1}{2}$x2与曲线g(x)=n+3m2lnx在交点处有相同的切线,则n的最大值为$\frac{3}{2}$e${\;}^{\frac{2}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若(1-$\frac{2}{x}$)2n的展开式有9项,则n的值为.
A.5B.4C.9D.$\frac{9}{4}$

查看答案和解析>>

同步练习册答案