精英家教网 > 高中数学 > 题目详情
1.如图所示为函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤$\frac{π}{2}$)的部分图象,其中A,B两点之间的距离为5,那么f(-1)=(  )
A.-1B.-$\sqrt{3}$C.$\sqrt{3}$D.1

分析 由函数图象经过点(0,1),代入解析式得sinφ,解出φ.根据A、B两点之间的距离为5,由勾股定理解出横坐标的差为3,得函数的周期T=6,由此算出ω,得出函数的解析式,从而求出f(-1)的值.

解答 解:∵函数图象经过点(0,1),
∴f(0)=2sinφ=1,可得sinφ=$\frac{1}{2}$,
又∵0≤φ≤$\frac{π}{2}$,
∴φ=$\frac{π}{6}$.
∵其中A、B两点的纵坐标分别为2、-2,
∴设A、B的横坐标之差为d,则|AB|=$\sqrt{{d}^{2}+(-2-2)^{2}}$=5,解之得d=3,
由此可得函数的周期T=6,得$\frac{2π}{ω}$=6,解之得ω=$\frac{π}{3}$.
∴函数f(x)的解析式为f(x)=2sin($\frac{π}{3}$x+$\frac{π}{6}$),
可得f(-1)=2sin(-$\frac{π}{3}$+$\frac{π}{6}$)=-2sin$\frac{π}{6}$=-1.
故选:A.

点评 本题给出正弦型三角函数的图象,确定其解析式并求f(-1)的值.着重考查了勾股定理、由y=Asin(ωx+φ)的部分图象确定其解析式等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知点A(2,1),P是焦点为F的抛物线y2=4x上的任一点,当△PAF的周长最小时,△PAF的面积为(  )
A.2B.$\frac{1}{2}$C.$\frac{7}{8}$D.$\frac{7}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在数列{an}中,a1=2,2an+1=2an+1,则a101的值为(  )
A.49B.50C.51D.52

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数f(x)为奇函数,g(x)=f(x)+2,g(-2)=3,则f(2)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知cosα=0.68,求sinα,tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知sinα=$\frac{12}{13}$,并且α是第二象限角,则tan$\frac{α}{2}$的值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知M,N是两个集合,定义集合N*M={x|x=y-z,y∈N,z∈M},若M={0,1,2},N={-2,-3},则N*M=(  )
A.{2,3,4,5}B.{0,-1,-2,-3}C.{1,2,3,4}D.{-2,-3,-4,-5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知集合A={-3,-1,1,2},集合B=[0,+∞),则A∩B={1,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知α为第四象限的角,且cos($\frac{π}{2}$+α)=$\frac{4}{5}$,则tanα=-$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案