分析 根据α的取值范围,利用同角的三角函数关系和二倍角关系,即可求出对应的数值.
解答 解:∵α∈(0,π),∴$\frac{α}{2}$∈(0,$\frac{π}{2}$),
又∵sin$\frac{α}{2}$=$\frac{1}{3}$,
∴cos$\frac{α}{2}$=$\sqrt{1{-sin}^{2}\frac{α}{2}}$=$\sqrt{1{-(\frac{1}{3})}^{2}}$=$\frac{2\sqrt{2}}{3}$,
∴sinα=2sin$\frac{α}{2}$cos$\frac{α}{2}$=2×$\frac{1}{3}$×$\frac{2\sqrt{2}}{3}$=$\frac{4\sqrt{2}}{9}$,
cosα=1-2sin2$\frac{α}{2}$=1-2×${(\frac{1}{3})}^{2}$=$\frac{7}{9}$,
tanα=$\frac{sinα}{cosα}$=$\frac{4\sqrt{2}}{9}$×$\frac{9}{7}$=$\frac{4\sqrt{2}}{9}$.
点评 本题考查了同角的三角函数关系和二倍角关系的应用问题,是基础题目.
科目:高中数学 来源: 题型:选择题
| A. | (-1,1) | B. | ($\frac{\sqrt{3}}{2}$,1) | C. | (-1,-$\frac{\sqrt{3}}{2}$] | D. | (-1,$\frac{\sqrt{3}}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{1}{2}$ | C. | $\frac{7}{8}$ | D. | $\frac{7}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 增函数且有最小值-5 | B. | 增函数且有最大值-5 | ||
| C. | 减函数且有最小值-5 | D. | 减函数且有最大值-5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | $\frac{1}{2}$ | C. | 3 | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {2,3,4,5} | B. | {0,-1,-2,-3} | C. | {1,2,3,4} | D. | {-2,-3,-4,-5} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com