精英家教网 > 高中数学 > 题目详情
18.已知sin$\frac{α}{2}$=$\frac{1}{3}$,α∈(0,π),求sinα,cosα,tanα的值.

分析 根据α的取值范围,利用同角的三角函数关系和二倍角关系,即可求出对应的数值.

解答 解:∵α∈(0,π),∴$\frac{α}{2}$∈(0,$\frac{π}{2}$),
又∵sin$\frac{α}{2}$=$\frac{1}{3}$,
∴cos$\frac{α}{2}$=$\sqrt{1{-sin}^{2}\frac{α}{2}}$=$\sqrt{1{-(\frac{1}{3})}^{2}}$=$\frac{2\sqrt{2}}{3}$,
∴sinα=2sin$\frac{α}{2}$cos$\frac{α}{2}$=2×$\frac{1}{3}$×$\frac{2\sqrt{2}}{3}$=$\frac{4\sqrt{2}}{9}$,
cosα=1-2sin2$\frac{α}{2}$=1-2×${(\frac{1}{3})}^{2}$=$\frac{7}{9}$,
tanα=$\frac{sinα}{cosα}$=$\frac{4\sqrt{2}}{9}$×$\frac{9}{7}$=$\frac{4\sqrt{2}}{9}$.

点评 本题考查了同角的三角函数关系和二倍角关系的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=sinωx•cosωx+$\sqrt{3}$cos2ωx-$\frac{\sqrt{3}}{2}$(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为$\frac{π}{4}$,若关于x的方程f(x)+k=0在区间[0,$\frac{π}{4}$]上有两个不同的实数解,则实数k的取值范围为(  )
A.(-1,1)B.($\frac{\sqrt{3}}{2}$,1)C.(-1,-$\frac{\sqrt{3}}{2}$]D.(-1,$\frac{\sqrt{3}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.满足z+$\frac{10}{z}$是实数,且z+4的实部与虚部互为相反数的虚数z是否存在,若存在,求出虚数z;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点A(2,1),P是焦点为F的抛物线y2=4x上的任一点,当△PAF的周长最小时,△PAF的面积为(  )
A.2B.$\frac{1}{2}$C.$\frac{7}{8}$D.$\frac{7}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.奇函数y=f(x)在[1,2]上是增函数且有最大值5,则y=f(x)在[-2,1]上是(  )
A.增函数且有最小值-5B.增函数且有最大值-5
C.减函数且有最小值-5D.减函数且有最大值-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知cos(α+2β)=$\frac{1}{5}$,cosα=$\frac{2}{5}$,则tan(α+β)tanβ=(  )
A.-2B.$\frac{1}{2}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求下列各函数的导数.
(1)y=(3x2-4x)(2x+1);
(2)y=x2sinx;
(3)y=$\frac{lnx}{{x}^{2}+1}$;
(4)y=($\sqrt{x}$+1)($\frac{1}{\sqrt{x}}$-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在数列{an}中,a1=2,2an+1=2an+1,则a101的值为(  )
A.49B.50C.51D.52

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知M,N是两个集合,定义集合N*M={x|x=y-z,y∈N,z∈M},若M={0,1,2},N={-2,-3},则N*M=(  )
A.{2,3,4,5}B.{0,-1,-2,-3}C.{1,2,3,4}D.{-2,-3,-4,-5}

查看答案和解析>>

同步练习册答案