精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=|x-1|-|2x+3|.
(I)解不等式f(x)>2;
(II)若关于x的不等式f(x)≤$\frac{3}{2}$a2-a的解集为R,求正数a的取值范围.

分析 (Ⅰ)通过讨论x的范围,解不等式,求出不等式的解集即可;
(Ⅱ)求出f(x)的最大值,问题转化为$\frac{3}{2}$a2-a≥$\frac{5}{2}$,求出a的范围即可.

解答 解:(Ⅰ)函数f(x)=|x-1|-|2x+3|=$\left\{\begin{array}{l}{x+4,x≤-\frac{3}{2}}\\{-3x-2,-\frac{3}{2}<x<1}\\{-x-4,x≥1}\end{array}\right.$,
当x≤-$\frac{3}{2}$时,由x+4>2,解得:x>-2,即-2<x≤-$\frac{3}{2}$;
当-$\frac{3}{2}$<x<1时,由-3x-2>2,解得:x<2,即-$\frac{3}{2}$<x<-$\frac{4}{3}$;
当x≥1时,由-x-4>2,解得:x<-6,无解;
所以原不等式的解集为{x|-2<x<-$\frac{4}{3}$};
(Ⅱ)由(Ⅰ)知函数f(x)在x=-$\frac{3}{2}$处取函数的最大值f(-$\frac{3}{2}$)=$\frac{5}{2}$,
要使关于x的不等式f(x)≤$\frac{3}{2}$a2-a的解集为R,只需$\frac{3}{2}$a2-a≥$\frac{5}{2}$,
即3a2-2a-5≥0,解得a≤-1或a≥$\frac{5}{3}$,
又a为正数,则a≥$\frac{5}{3}$.

点评 本题考查了解绝对值不等式问题,考查函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.三个数a=0.3-2,b=log20.3,c=20.3之间的大小关系是(  )
A.a<b<cB.b<c<aC.b<a<cD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.碘-131经常被用于对甲状腺的研究,它的半衰期大约是8天(即经过8天的时间,有一半的碘-131会衰变为其他元素).今年10月1日凌晨,在一容器中放入一定量的碘-131,到10月25日凌晨,测得该容器内还剩有2毫克的碘-131,则10月1日凌晨,放人该容器的碘-131的含量是(  )
A.8毫克B.16毫克C.32毫克D.64毫克

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知A={ x|x2-2x-3≤0},若实数a∈A,则a的取值范围是[-1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow{a}$=(1,t),$\overrightarrow{b}$=(-2,1)满足(2$\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则t=$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}满足a1=10,an+1-an=n(n∈N*),则$\frac{a_n}{n}$取最小值时n=4或5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设定点F1(0,-3),F2(0,3),动点P满足条件|PF1|+|PF2|=m+$\frac{16}{m}$(其中常数m>0),则点P的轨迹是(  )
A.不存在B.椭圆或线段C.线段D.椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.一个等腰三角形的周长是30,底边长y是关于腰长x的函数,则这个函数的解析式为y=30-2x,(0<x<15)..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义在R上的函数f(x)关于点(2,0)对称,且对任意的实数x都满足f(x)=f(2-x),若f(-5)=-2,则f(2015)=(  )
A.-2B.2C.3D.-3

查看答案和解析>>

同步练习册答案