精英家教网 > 高中数学 > 题目详情
18.已知双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率是$\frac{\sqrt{7}}{2}$,则E的渐近线方程为(  )
A.y=±xB.y=±$\frac{\sqrt{2}}{2}$xC.y=±$\frac{\sqrt{3}}{2}$xD.y=±2x

分析 根据双曲线的离心率,求出$\frac{b}{a}$=$\frac{\sqrt{3}}{2}$即可得到结论.

解答 解:∵双曲线的离心率是$\frac{\sqrt{7}}{2}$,
∴e=$\frac{c}{a}$=$\frac{\sqrt{7}}{2}$,即$\frac{{c}^{2}}{{a}^{2}}$=$\frac{{a}^{2}+{b}^{2}}{{a}^{2}}$=1+($\frac{b}{a}$)2=$\frac{7}{4}$,
即($\frac{b}{a}$)2=$\frac{7}{4}$-1=$\frac{3}{4}$,则$\frac{b}{a}$=$\frac{\sqrt{3}}{2}$,
即双曲线的渐近线方程为y═±$\frac{b}{a}$x=±$\frac{\sqrt{3}}{2}$x,
故选:C.

点评 本题主要考查双曲线渐近线的求解,根据双曲线离心率的关系进行求解是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知某算法的算法框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(xn,yn),…,则程序结束时,共输出(x,y)的组数为(  )
A.1006B.1007C.1008D.1009

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=-x2+2ax-a-a2在x∈[0,2]上的最大值为-2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)由频率分布直方图估计50名学生数学成绩的中位数和平均数;
(Ⅱ)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m,n,求事件“|m-n|>10”概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.圆C1:x2+y2-4x-2y+1=0与圆C2:x2+y2+2x+6y-39=0的位置关系是内切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.云南省2014年全省高中男生身高统计调查显示:全省男生的身高服从正态分布N(170.5.16).高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于175.5cm和187.5cm之间,将测量结果按如下方式分成6组:第 一组[157.5,162.5),第二组[162.5,167.5),…第 6 组(182.5,187.5],按上述分组方法得到的频率分布直方图如图所示.
(1)试评估我校高三年级男生在全省高中男生中的平均身高状况;
(2)求这50名男生身高在177.5cm以上(含177.5cm)的人数;
(3)在这50名男生身高在177.5cm.以上(含177.5cm)的人中任意抽取2人,该2人中身高排名(从高到低)在全省前130名的人数记为ζ,求ζ的数学期望.
参考数据:若ζ〜N(μ,σ2
P(μ-σ<ξ≤μ+σ)=0.6826,
p(μ-2σ<ξ≤μ+2σ)=0.9544
Pμ-3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数z=$\frac{10}{3+i}$-2i(其中i为虚数单位),则|z|=(  )
A.3$\sqrt{3}$B.3$\sqrt{2}$C.2$\sqrt{3}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F(c,0),直线x=a与双曲线C的渐近线在第一象限的交点为A,O为坐标原.若△OAF的面积为$\frac{1}{3}$a2,则双曲线C的离心率为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{3\sqrt{2}}{2}$C.$\sqrt{2}$D.$\frac{\sqrt{13}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一枚硬币连掷3次,仅有两次正面向上的概率是(  )
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{1}{4}$

查看答案和解析>>

同步练习册答案