精英家教网 > 高中数学 > 题目详情
10.已知复数z=$\frac{10}{3+i}$-2i(其中i为虚数单位),则|z|=(  )
A.3$\sqrt{3}$B.3$\sqrt{2}$C.2$\sqrt{3}$D.2$\sqrt{2}$

分析 根据复数的运算法则和复数的模计算即可.

解答 解:z=$\frac{10}{3+i}$-2i=$\frac{10(3-i)}{(3+i)(3-i)}$-2i=3-i-2i=3-3i,
则|z|=3$\sqrt{2}$,
故选:B.

点评 本题考查了复数的运算法则和复数的模,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow{a}$=(-3,4),$\overrightarrow{b}$=(1,m),若$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow{b}$),m=(  )
A.$\frac{11}{2}$B.7C.-7D.-$\frac{11}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,角α的终边与单位圆交于点M,M的纵坐标为$\frac{4}{5}$,则cosα=(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率是$\frac{\sqrt{7}}{2}$,则E的渐近线方程为(  )
A.y=±xB.y=±$\frac{\sqrt{2}}{2}$xC.y=±$\frac{\sqrt{3}}{2}$xD.y=±2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知m,n为直线,α,β为空间的两个平面,给出下列命题:
①$\left\{\begin{array}{l}m⊥α\\ m⊥n\end{array}$,⇒n∥α;②$\left\{\begin{array}{l}m?α\\ n?β\\ α∥β\end{array}$,⇒m∥n;③$\left\{\begin{array}{l}m⊥α\\ m⊥β\end{array}$,⇒α∥β;④$\left\{\begin{array}{l}m⊥β\\ n⊥β\end{array}$,⇒m∥n.
其中的正确命题为③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.下列关于命题的说法正确的是(4)(请将所有正确命题的序号都填上)
(1)命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”;
(2)“x=-1”是“x2-5x-6=0”的必要不充分条件;
(3)命题“a,b都是有理数”的否定是“a,b都不是有理数”;
(4)命题“若x=y,则sinx=siny”的逆否命题为真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设a∈R,若复数$\frac{a+i}{1+i}$(i为虚数单位)的实部和虚部相等,则0,$|{\overline z}$|=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线${l_1}:\sqrt{3}x+y-1=0,{l_2}:ax+y=1$,且l1⊥l2,则l1的倾斜角为$\frac{2π}{3}$,原点到l2的距离为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.点P在圆C1:x2+y2+4x+2y+1=0上,点Q在圆C2:x2+y2-4x-4y+6=0上,则|PQ|的最小值是(  )
A.5B.1C.$3-\sqrt{2}$D.$3+\sqrt{2}$

查看答案和解析>>

同步练习册答案