精英家教网 > 高中数学 > 题目详情
8.已知点O(0,0),A(1,2),B(4,5)$\overrightarrow{OP}$=$\overrightarrow{OA}$+$t\overrightarrow{AB}$.若点P在x轴上,则实数t的值为-$\frac{2}{3}$.

分析 利用坐标来表示平面向量的运算,又因为点P在x轴上,所以它的纵坐标为0,从而得到答案.

解答 解:$\overrightarrow{OP}$=$\overrightarrow{OA}$+$t\overrightarrow{AB}$=(1-0,2-0)+t(4-1,5-2)=(1+3t,2+3t)
∵点P在x轴上∴2+3t=0,解得t=-$\frac{2}{3}$
故答案为:-$\frac{2}{3}$

点评 本题考查了利用坐标来表示平面向量的运算,属于最基本的题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=sinx(sinx+$\sqrt{3}cosx$).
(1)求f(x)的最小正周期和单调递减区间;
(2)当x∈[0,$\frac{π}{2}$]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆O的圆心为原点O,且与直线x+y+4$\sqrt{2}$=0相切.
(1)求圆O的方程;
(2)斜率为1的直线l与圆O相交于A,B两点,求直线l的方程,使△OAB的面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,AB⊥BC侧面PAB⊥底面ABCD,PA=AD=AB=2,BC=4.

(1)若PB中点为E.求证:AE∥平面PCD;
(2)若∠PAB=60°,求直线BD与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在极坐标系内,已知曲线C1的方程为ρ=2cosθ,以极点为原点,极轴方向为x正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C2的参数方程为$\left\{\begin{array}{l}x=4t-1\\ y=3t+1\end{array}\right.$(t为参数).设点P为曲线C2上的动点,过点P作曲线C1的两条切线,则这两条切线所成角的最大值是60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=$\left\{\begin{array}{l}{\sqrt{x}-1,x≥0}\\{2cosx-1,-2π≤x<0}\end{array}\right.$的所有零点的和等于(  )
A.1-2πB.1-$\frac{3π}{2}$C.1-πD.1-$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.执行如图所示的程序框图,输出S的值为(  )
A.0B.-1C.-$\frac{1}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,已知正方形ABCD的边长为2,点E为AB的中点.以A为圆心,AE为半径,作弧交AD于点F.若P为劣弧$\widehat{EF}$上的动点,则$\overrightarrow{PC}•\overrightarrow{PD}$的最小值为5-2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在菱形ABCD中,AB=2,∠BAD=60°,沿对角线BD将△ABD折起,使A,C之间的距离为$\sqrt{6}$,若P,Q分别为线段BD,CA上的动点.

(1)求线段PQ长度的最小值;
(2)当线段PQ长度最小时,求直线PQ与平面ACD所成角的正弦值.

查看答案和解析>>

同步练习册答案