精英家教网 > 高中数学 > 题目详情
17.如图,已知正方形ABCD的边长为2,点E为AB的中点.以A为圆心,AE为半径,作弧交AD于点F.若P为劣弧$\widehat{EF}$上的动点,则$\overrightarrow{PC}•\overrightarrow{PD}$的最小值为5-2$\sqrt{5}$.

分析 首先以A为原点,直线AB,AD分别为x,y轴,建立平面直角坐标系,可设P(cosθ,sinθ),从而可表示出$\overrightarrow{PC}•\overrightarrow{PD}=5-2(cosθ+2sinθ)$,根据两角和的正弦公式即可得到$\overrightarrow{PC}•\overrightarrow{PD}$=5-2$\sqrt{5}$sin(θ+φ),从而可求出$\overrightarrow{PC}•\overrightarrow{PD}$的最小值.

解答 解:如图,以A为原点,边AB,AD所在直线为x,y轴建立平面直角坐标系,则:
A(0,0),C(2,2),D(0,2),设P(cosθ,sinθ);
∴$\overrightarrow{PC}•\overrightarrow{PD}=(2-cosθ,2-sinθ)$•(-cosθ,2-sinθ)
=(2-cosθ)(-cosθ)+(2-sinθ)2
=5-2(cosθ+2sinθ)=$5-2\sqrt{5}$sin(θ+φ),tanφ=$\frac{1}{2}$;
∴sin(θ+φ)=1时,$\overrightarrow{PC}•\overrightarrow{PD}$取最小值$5-2\sqrt{5}$.
故答案为:5-2$\sqrt{5}$.

点评 考查建立平面直角坐标系,利用向量的坐标解决向量问题的方法,由点的坐标求向量坐标,以及数量积的坐标运算,两角和的正弦公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.一对父子参加一个亲子摸奖游戏,其规则如下:父亲在装有红色、白色球各两个的甲袋子里随机取两个球,儿子在装有红色、白色、黑色球各一个的乙袋子里随机取一个球,父子俩取球相互独立,两人各摸球一次合在一起称为一次摸奖,他们取出的三个球的颜色情况与他们获得的积分对应如表:
所取球的情况三个球均为红色三个球均不同色恰有两球为红色其他情况
所获得的积分18090600
(Ⅰ)求一次摸奖中,所取的三个球中恰有两个是红球的概率;
(Ⅱ)设一次摸奖中,他们所获得的积分为X,求X的分布列及均值(数学期望)E(X);
(Ⅲ)按照以上规则重复摸奖三次,求至少有两次获得积分为60的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知点O(0,0),A(1,2),B(4,5)$\overrightarrow{OP}$=$\overrightarrow{OA}$+$t\overrightarrow{AB}$.若点P在x轴上,则实数t的值为-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与抛物线y2=4x有一个公共的焦点F,且两曲线的一个交点为P.若|PF|=$\frac{5}{2}$,则双曲线的渐近线方程为(  )
A.y=±$\frac{1}{2}$xB.y=±2xC.y=±$\sqrt{3}$xD.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列,An:a1,a2,…,an(n≥2,n∈N*)是正整数1,2,3,…,n的一个全排列.若对每个k∈{2,3,…,n}都有|ak-ak-1|=2或3,则称An为H数列.
(Ⅰ)写出满足a5=5的所有H数列A5
(Ⅱ)写出一个满足a5k(k=1,2,…,403)的H数列A2015的通项公式;
(Ⅲ)在H数列A2015中,记bk=a5k(k=1,2,…,403).若数列{bk}是公差为d的等差数列,求证:d=5或-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.袋中共有8个球,其中有3个白球,5个黑球,这些球除颜色外完全相同.从袋中随机取出一球,如果取出白球,则把它放回袋中;如果取出黑球,则该黑球不再放回,并且另补一个白球放入袋中.重复上述过程n次后,袋中白球的个数记为Xn
(1)求随机变量X2的概率分布及数学期望E(X2);
(2)求随机变量Xn的数学期望E(Xn)关于n的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)左右顶点为A1,A2,左右焦点为F1,F2,P为双曲线C上异于顶点的一动点,直线PA1斜率为k1,直线PA2斜率为k2,且k1k2=1,又△PF1F2内切圆与x轴切于点(1,0),则双曲线方程为x2-y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=ex+ax+b点(0,f(0))处的切线方程为x+y+1=0.
(Ⅰ)求a,b值,并求f(x)的单调区间;
(Ⅱ)证明:当x≥0时,f(x)>x2+4$\sqrt{x+1}$-2x-8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,△ABC的顶点都在圆O上,点P在BC的延长线上,且PA与圆O切于点A.
(1)若∠ACB=70°,求∠BAP的度数;
(2)若$\frac{AC}{AB}$=$\frac{2}{5}$,求$\frac{PC}{PB}$的值.

查看答案和解析>>

同步练习册答案