分析 (1)由题意得到X2的所有取值,然后利用古典概型概率计算公式求出概率,则可列出频率分布表,代入期望公式求期望;
(2)设P(Xn=3+k)=pk,k=0,1,2,3,4,5.则p0+p1+p2+p3+p4+p5=1,E(Xn)=3p0+4p1+5p2+6p3+7p4+8p5.再把P(Xn+1=3)、P(Xn+1=4)、…、
P(Xn+1=8)用p0、p1、p2、p3、p4、p5表示,得到E(Xn+1)-8=$\frac{7}{8}$(E(Xn)-8),从而说明数列{E(Xn)-8}为等比数列,由等比数列的通项公式得答案.
解答 解:(1)由题意可知X2=3,4,5.
当X2=3时,即二次摸球均摸到白球,其概率是P(X2=3)=$\frac{C_3^1}{C_8^1}×\frac{C_3^1}{C_8^1}$=$\frac{9}{64}$;
当X2=4时,即二次摸球恰好摸到一白,一黑球,其概率是P(X2=4)=$\frac{C_3^1C_5^1}{C_8^1C_8^1}+\frac{C_5^1C_4^1}{C_8^1C_8^1}$=$\frac{35}{64}$;
当X2=5时,即二次摸球均摸到黑球,其概率是P(X2=5)=$\frac{C_5^1C_4^1}{C_8^1C_8^1}$=$\frac{5}{16}$.
所以随机变量X2的概率分布如下表:
| X2 | 3 | 4 | 5 |
| P | $\frac{9}{64}$ | $\frac{35}{64}$ | $\frac{5}{16}$ |
点评 本题考查了离散型随机变量的期望与方差,考查了古典概型概率公式的应用,考查了等比关系的确定及等比数列通项公式的求法,寻找E(Xn+1)-8与(E(Xn)-8)的关系是解答该题的关键,属有一定难度题目.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{3}$ | B. | $\frac{\sqrt{2}}{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1-2π | B. | 1-$\frac{3π}{2}$ | C. | 1-π | D. | 1-$\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)是奇函数,g(x)是奇函数 | B. | f(x)是偶函数,g(x)是奇函数 | ||
| C. | f(x)是奇函数,g(x)是偶函数 | D. | f(x)是偶函数,g(x)是偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,3] | B. | [1,11] | C. | [1,3] | D. | [-1,11] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com