精英家教网 > 高中数学 > 题目详情
10.已知点A1(a1,1),A2(a2,2),…,An(an,n)(n∈N*)在函数y=log${\;}_{\frac{1}{3}}$x的图象上,则数列{an}的通项公式为an=($\frac{1}{3}$)n;设O为坐标原点,点Mn(an,0)(n∈N*),则△OA1M1,△OA2M2,…,△OAnMn中,面积的最大值是$\frac{1}{6}$.

分析 由对数函数可得通项公式,又可得△OAnMn的面积Sn的表达式,由函数的单调性可得.

解答 解:由题意可得n=log${\;}_{\frac{1}{3}}$an,∴an=($\frac{1}{3}$)n
又可得△OAnMn的面积Sn=$\frac{1}{2}$×an×n=$\frac{1}{2}$n($\frac{1}{3}$)n
构造函数y=$\frac{1}{2}$x($\frac{1}{3}$)x,可判函数单调递减,
∴当n=1时,Sn取最大值$\frac{1}{6}$
故答案为:an=($\frac{1}{3}$)n;$\frac{1}{6}$

点评 本题考查对数函数的性质,涉及函数的单调性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设A(x1,y1),B(x2,y2)是椭圆上的两点,已知向量$\overrightarrow{m}$=($\frac{{x}_{1}}{b}$,$\frac{{y}_{1}}{a}$),向量$\overrightarrow{b}$=($\frac{{x}_{2}}{b}$,$\frac{{y}_{2}}{a}$),若$\overrightarrow{m}•\overrightarrow{n}$=0,且椭圆的离心率为e=$\frac{\sqrt{3}}{2}$,短轴长为2,O为坐标原点.
(1)求椭圆的方程;
(2)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;
(3)△AOB的面积是否为定值?如果是,请求出此定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{2}$ax2-(2a+1)x+2lnx(a∈R)
(1)若曲线f(x)在x=1和x=3处的切线互相平行,求函数f(x)的单调区间
(2)若函数f(x)既有极大值又有极小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\frac{1}{2}$sin2x+$\sqrt{3}$cos2x,则f(x)的最小正周期是π;如果f(x)的导函数是f′(x),则f′($\frac{π}{6}$)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与抛物线y2=4x有一个公共的焦点F,且两曲线的一个交点为P.若|PF|=$\frac{5}{2}$,则双曲线的渐近线方程为(  )
A.y=±$\frac{1}{2}$xB.y=±2xC.y=±$\sqrt{3}$xD.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在如图所示的算法流程图中,若输出的y的值为26,则输入的x的值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.袋中共有8个球,其中有3个白球,5个黑球,这些球除颜色外完全相同.从袋中随机取出一球,如果取出白球,则把它放回袋中;如果取出黑球,则该黑球不再放回,并且另补一个白球放入袋中.重复上述过程n次后,袋中白球的个数记为Xn
(1)求随机变量X2的概率分布及数学期望E(X2);
(2)求随机变量Xn的数学期望E(Xn)关于n的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.对于定义域和值域均为[0,1]的函数f(x),定义f1(x)=f(x)、f2(x)=f(f1(x)),…,n=1,2,3…,满足fn(x)=x的点x∈[0,1]为f的n阶周期点,f(x)=$\left\{\begin{array}{l}{2x,0≤x≤\frac{1}{2}}\\{2-2x,\frac{1}{2}<x≤1}\end{array}\right.$,则f的n阶周期点的个数是(  )
A.2nB.2(2n-1)C.2nD.2n2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)=sin(ωx-$\frac{π}{4}$)(ω>0)的最小正周期为π,把f(x)图象的横坐标都伸长为原来的2倍(纵坐标不变),再沿x轴向右平移$\frac{π}{4}$个单位得到g(x)的图象,若tanα=2,则g(2α+$\frac{π}{2}$)的大小为(  )
A.-$\frac{5}{12}$B.-$\frac{4}{5}$C.$\frac{5}{12}$D.$\frac{4}{5}$

查看答案和解析>>

同步练习册答案