精英家教网 > 高中数学 > 题目详情
20.已知f(x)=sin(ωx-$\frac{π}{4}$)(ω>0)的最小正周期为π,把f(x)图象的横坐标都伸长为原来的2倍(纵坐标不变),再沿x轴向右平移$\frac{π}{4}$个单位得到g(x)的图象,若tanα=2,则g(2α+$\frac{π}{2}$)的大小为(  )
A.-$\frac{5}{12}$B.-$\frac{4}{5}$C.$\frac{5}{12}$D.$\frac{4}{5}$

分析 由条件利用正弦函数的周期性求得ω=2,可得f(x)的解析式,再利用y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,从而利用诱导公式、二倍角公式求得g(2α+$\frac{π}{2}$)的值.

解答 解:由f(x)=sin(ωx-$\frac{π}{4}$)(ω>0)的最小正周期为π,
可得$\frac{2π}{ω}$=π,∴ω=2,f(x)=sin(2x-$\frac{π}{4}$).
把f(x)图象的横坐标都伸长为原来的2倍(纵坐标不变),可得y=sin(x-$\frac{π}{4}$)的图象;
再沿x轴向右平移$\frac{π}{4}$个单位得到g(x)=sin(x-$\frac{π}{4}$-$\frac{π}{4}$)=sin(x-$\frac{π}{2}$)=-cosx的图象,
若tanα=2,则g(2α+$\frac{π}{2}$)=-cos(2α+$\frac{π}{2}$)=sin2α=$\frac{2sinαcosα}{{sin}^{2}α{+cos}^{2}α}$=$\frac{2tanα}{1{+tan}^{2}α}$=$\frac{4}{1+4}$=$\frac{4}{5}$.

点评 本题主要考查正弦函数的周期性,y=Asin(ωx+φ)的图象变换规律,诱导公式、二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知点A1(a1,1),A2(a2,2),…,An(an,n)(n∈N*)在函数y=log${\;}_{\frac{1}{3}}$x的图象上,则数列{an}的通项公式为an=($\frac{1}{3}$)n;设O为坐标原点,点Mn(an,0)(n∈N*),则△OA1M1,△OA2M2,…,△OAnMn中,面积的最大值是$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=x•lnx2,g(x)=$\left\{\begin{array}{l}{{e}^{x}-{e}^{-x},x>0}\\{{e}^{-x}-{e}^{x},x<0}\end{array}\right.$则下列命题正确的是(  )
A.f(x)是奇函数,g(x)是奇函数B.f(x)是偶函数,g(x)是奇函数
C.f(x)是奇函数,g(x)是偶函数D.f(x)是偶函数,g(x)是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.化简:cos2A+cos2($\frac{2π}{3}$+A)+cos2($\frac{4π}{3}$+A)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1:$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$ (t为参数),C2:$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数).
(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;
(Ⅱ)若C1上的点P对应的参数为t=$\frac{π}{2}$,Q为C2上的动点,求PQ中点M到直线C3:ρ(cosθ-2sinθ)=7距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在2014年教师节来临之际,某学校计划为教师颁发一定的奖励,该学校计划采用说课评价与讲课评价相结合的方式来决定教师获得奖励的等级.已知说课评价和讲课评价的成绩都分为1分,2分,3分,4分,5分,共5个等级.所有教师说课评价与讲课评价成绩的频率分布情况如图所示(参加评价的每个教师两种评价都参加了),其中讲课评价成绩为5分的有12人.

(1)求该学校参加评价活动的教师总人数;
(2)若在说课评价为2分的教师中,讲课评价也为2分的有4人,其余讲课评价均为3分.若从说课评价为2分的教师中选取2人进行座谈,求这2人说课评价与讲课评价总分的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若实数x,y满足不等式组$\left\{\begin{array}{l}x+3y-3≤0\\ x-y+1≥0\\ y≥-1\end{array}\right.$则z=2|x|+y的取值范围是(  )
A.[-1,3]B.[1,11]C.[1,3]D.[-1,11]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,抛物线E:y2=2px(p>0)的焦点为F,其准线l与x轴交于点A,过抛物线E上的动点p作PD⊥l于点D.当∠DPF=$\frac{2π}{3}$时,|PF|=4.
(Ⅰ)求抛物线E的方程;
(Ⅱ)过点P作直线m⊥DF,求直线m与抛物线E的交点个数;
(Ⅲ)点C是△DPF的外心,是否存在点P,使得△CDP的面积最小.若存在,请求出面积的最小值及P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在五张卡片上分别写出有2,3,4,5,6这5个数字,其中6可以当9使用,从中任取3张,组成三位数,这样的三位数个数为(  )
A.60个B.70个C.96个D.136个

查看答案和解析>>

同步练习册答案