精英家教网 > 高中数学 > 题目详情
15.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1:$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$ (t为参数),C2:$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数).
(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;
(Ⅱ)若C1上的点P对应的参数为t=$\frac{π}{2}$,Q为C2上的动点,求PQ中点M到直线C3:ρ(cosθ-2sinθ)=7距离的最小值.

分析 (Ⅰ)曲线C1:$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$ (t为参数),利用sin2t+cos2t=1即可化为普通方程;C2:$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数),利用cos2θ+sin2θ=1化为普通方程.
(Ⅱ)当t=$\frac{π}{2}$时,P(-4,4),Q(8cosθ,3sinθ),故M$(-2+cosθ,2+\frac{3}{2}sinθ)$,直线C3:ρ(cosθ-2sinθ)=7化为x-2y=7,利用点到直线的距离公式与三角函数的单调性即可得出.

解答 解:(Ⅰ)曲线C1:$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$ (t为参数),化为(x+4)2+(y-3)2=1,
∴C1为圆心是(-4,3),半径是1的圆.
C2:$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数),化为$\frac{{x}^{2}}{64}+\frac{{y}^{2}}{9}=1$.
C2为中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆.
(Ⅱ)当t=$\frac{π}{2}$时,P(-4,4),Q(8cosθ,3sinθ),故M$(-2+4cosθ,2+\frac{3}{2}sinθ)$,
直线C3:ρ(cosθ-2sinθ)=7化为x-2y=7,
M到C3的距离d=$\frac{\sqrt{5}}{5}|4cosθ-3sinθ-13|$=$\frac{\sqrt{5}}{5}$|5sin(θ+φ)-13|,
从而当cosθsinθ=$\frac{4}{5}$,sinθ=-$\frac{3}{5}$时,d取得最小值$\frac{8\sqrt{5}}{5}$.

点评 本题考查了参数方程化为普通方程、点到直线的距离公式公式、三角函数的单调性、椭圆与圆的参数与标准方程,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与抛物线y2=4x有一个公共的焦点F,且两曲线的一个交点为P.若|PF|=$\frac{5}{2}$,则双曲线的渐近线方程为(  )
A.y=±$\frac{1}{2}$xB.y=±2xC.y=±$\sqrt{3}$xD.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=ex+ax+b点(0,f(0))处的切线方程为x+y+1=0.
(Ⅰ)求a,b值,并求f(x)的单调区间;
(Ⅱ)证明:当x≥0时,f(x)>x2+4$\sqrt{x+1}$-2x-8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=3sin(ωx-$\frac{π}{6}$)(ω>0)和g(x)=2cos(2x+φ)+1的图象的对称轴完全相同,若x∈[0,$\frac{π}{2}$],则f(x)的取值范围是(  )
A.[-3,3]B.[-$\frac{3}{2}$,$\frac{3}{2}$]C.[-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$]D.[-$\frac{3}{2}$,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.
(1)求椭圆C的方程;
(2)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求|OR|+|OS|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)=sin(ωx-$\frac{π}{4}$)(ω>0)的最小正周期为π,把f(x)图象的横坐标都伸长为原来的2倍(纵坐标不变),再沿x轴向右平移$\frac{π}{4}$个单位得到g(x)的图象,若tanα=2,则g(2α+$\frac{π}{2}$)的大小为(  )
A.-$\frac{5}{12}$B.-$\frac{4}{5}$C.$\frac{5}{12}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,△ABC的顶点都在圆O上,点P在BC的延长线上,且PA与圆O切于点A.
(1)若∠ACB=70°,求∠BAP的度数;
(2)若$\frac{AC}{AB}$=$\frac{2}{5}$,求$\frac{PC}{PB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某校开展绘画比赛,9位评委为参赛作品A给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,但复核员在复核时,发现有一个数字(茎叶图中的x)无法看清.若记分员计算无误,则数字x应该是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在多面体ABCDE中,CD和BE都垂直于平面ABC,且∠ACB=90°,AB=4,BE=1,CD=3,DE=2$\sqrt{2}$.
(Ⅰ)求证:BE∥平面ACD;
(Ⅱ)求多面体ABCDE的体积.

查看答案和解析>>

同步练习册答案