精英家教网 > 高中数学 > 题目详情
14.如图在边长为1的正方形网格中用粗线画出了某个多面体的三视图,则该多面体的表面积为8+12$\sqrt{2}$.

分析 根据几何体的三视图,得出该几何体是底面为等腰直角三角形,高为2的三棱锥,
画出三棱锥的直观图,求出它的表面积.

解答 解:根据几何体的三视图,得;
该几何体是底面为等腰直角三角形的三棱锥P-ABC,
且三棱锥的高PO=2,如图所示:
∴侧面△PAB的面积为S△PAB=$\frac{1}{2}×$4$\sqrt{2}$×2=4$\sqrt{2}$,
△PBC与△PAC的面积为S△PBC=S△PAC=$\frac{1}{2}$×4×$\sqrt{{2}^{2}{+2}^{2}}$=4$\sqrt{2}$,
底面△ABC的面积为S△ABC=$\frac{1}{2}$×4×4=8,
∴三棱锥的体积为S△PAB+S△PAC+S△PBC+S△ABC=8+12$\sqrt{2}$.
故答案为:8+12$\sqrt{2}$.

点评 本题考查了空间几何体的三视图的应用问题,解题时应根据三视图得出几何体的结构特征,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在?ABCD中,AB=4$\sqrt{6}$cm,AD=4$\sqrt{3}$cm,∠A=45°,求这个四边形两条对角线的长度和平行四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与抛物线y2=4x有一个公共的焦点F,且两曲线的一个交点为P.若|PF|=$\frac{5}{2}$,则双曲线的渐近线方程为(  )
A.y=±$\frac{1}{2}$xB.y=±2xC.y=±$\sqrt{3}$xD.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.袋中共有8个球,其中有3个白球,5个黑球,这些球除颜色外完全相同.从袋中随机取出一球,如果取出白球,则把它放回袋中;如果取出黑球,则该黑球不再放回,并且另补一个白球放入袋中.重复上述过程n次后,袋中白球的个数记为Xn
(1)求随机变量X2的概率分布及数学期望E(X2);
(2)求随机变量Xn的数学期望E(Xn)关于n的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)左右顶点为A1,A2,左右焦点为F1,F2,P为双曲线C上异于顶点的一动点,直线PA1斜率为k1,直线PA2斜率为k2,且k1k2=1,又△PF1F2内切圆与x轴切于点(1,0),则双曲线方程为x2-y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.对于定义域和值域均为[0,1]的函数f(x),定义f1(x)=f(x)、f2(x)=f(f1(x)),…,n=1,2,3…,满足fn(x)=x的点x∈[0,1]为f的n阶周期点,f(x)=$\left\{\begin{array}{l}{2x,0≤x≤\frac{1}{2}}\\{2-2x,\frac{1}{2}<x≤1}\end{array}\right.$,则f的n阶周期点的个数是(  )
A.2nB.2(2n-1)C.2nD.2n2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=ex+ax+b点(0,f(0))处的切线方程为x+y+1=0.
(Ⅰ)求a,b值,并求f(x)的单调区间;
(Ⅱ)证明:当x≥0时,f(x)>x2+4$\sqrt{x+1}$-2x-8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=3sin(ωx-$\frac{π}{6}$)(ω>0)和g(x)=2cos(2x+φ)+1的图象的对称轴完全相同,若x∈[0,$\frac{π}{2}$],则f(x)的取值范围是(  )
A.[-3,3]B.[-$\frac{3}{2}$,$\frac{3}{2}$]C.[-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$]D.[-$\frac{3}{2}$,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某校开展绘画比赛,9位评委为参赛作品A给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,但复核员在复核时,发现有一个数字(茎叶图中的x)无法看清.若记分员计算无误,则数字x应该是1.

查看答案和解析>>

同步练习册答案