精英家教网 > 高中数学 > 题目详情
16.在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,AB⊥BC侧面PAB⊥底面ABCD,PA=AD=AB=2,BC=4.

(1)若PB中点为E.求证:AE∥平面PCD;
(2)若∠PAB=60°,求直线BD与平面PCD所成角的正弦值.

分析 (1)取PC中点F,并连接DF,FE,根据已知条件容易说明四边形ADFE为平行四边形,从而有AE∥DF,根据线面平行的判定定理即得到AE∥平面PCD;
(2)设B到平面PCD的距离为h,从而直线BD与平面PCD所成角的正弦值便可表示为$\frac{h}{BD}$,BD根据已知条件容易求出,而求h可通过VP-BCD=VB-PCD求出:取AB中点O,连接PO,可以说明PO⊥平面ABCD,而根据已知条件能够求出S△BCD,S△PCD,从而求出h,从而求得答案.

解答 解:(1)证明:如图,取PC的中点F,连结DF,EF;
∵EF∥AD,且AD=EF,所以ADFE为平行四边形;
∴AE∥DF,且AE?平面PCD,DF?平面PCD;
∴AE∥平面PCD;
(2)
∵∠PAB=60°,PA=AB;
∴△PAB为等边三角形,取AB中点O,连接PO;
则PO⊥AB;
又侧面PAB⊥底面ABCD,平面PAB∩平面ABCD=AB;
∴PO⊥平面ABCD;
根据已知条件可求得PO=$\sqrt{3}$,S△BCD=4,PD=CD=$2\sqrt{2}$,PC=2$\sqrt{5}$,${S}_{△PCD}=\sqrt{15}$;
设点B到平面PCD的距离为h;
∴${V_{P-BCD}}=\frac{4}{3}\sqrt{3}$,${V}_{B-PCD}=\frac{\sqrt{15}}{3}h$;
∵VP-BCD=VB-PCD
∴$h=\frac{4}{\sqrt{5}}$;
∴直线BD与平面PCD所成角θ的正弦值$sinθ=\frac{h}{BD}=\frac{{\frac{4}{{\sqrt{5}}}}}{{2\sqrt{2}}}=\frac{{\sqrt{10}}}{5}$.

点评 考查中位线的性质,平行四边形的定义,线面平行的判定定理,以及直角三角形边的关系,面面垂直的性质定理,棱锥的体积公式,线面角的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.设(3x-2)6=a0+a1(2x-1)+a2(2x-1)2+…+a6(2x-1)6,则$\frac{{{a_1}+{a_3}+{a_5}}}{{{a_0}+{a_2}+{a_4}+{a_6}}}$=-$\frac{63}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.一对父子参加一个亲子摸奖游戏,其规则如下:父亲在装有红色、白色球各两个的甲袋子里随机取两个球,儿子在装有红色、白色、黑色球各一个的乙袋子里随机取一个球,父子俩取球相互独立,两人各摸球一次合在一起称为一次摸奖,他们取出的三个球的颜色情况与他们获得的积分对应如表:
所取球的情况三个球均为红色三个球均不同色恰有两球为红色其他情况
所获得的积分18090600
(Ⅰ)求一次摸奖中,所取的三个球中恰有两个是红球的概率;
(Ⅱ)设一次摸奖中,他们所获得的积分为X,求X的分布列及均值(数学期望)E(X);
(Ⅲ)按照以上规则重复摸奖三次,求至少有两次获得积分为60的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在?ABCD中,AB=4$\sqrt{6}$cm,AD=4$\sqrt{3}$cm,∠A=45°,求这个四边形两条对角线的长度和平行四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.给出函数f(x)的数值对应表:
x1-2324-4
y345410
则与f(x)=4对应的自变量的值是(  )
A.-2B.1C.2D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{2}$ax2-(2a+1)x+2lnx(a∈R)
(1)若曲线f(x)在x=1和x=3处的切线互相平行,求函数f(x)的单调区间
(2)若函数f(x)既有极大值又有极小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知点O(0,0),A(1,2),B(4,5)$\overrightarrow{OP}$=$\overrightarrow{OA}$+$t\overrightarrow{AB}$.若点P在x轴上,则实数t的值为-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与抛物线y2=4x有一个公共的焦点F,且两曲线的一个交点为P.若|PF|=$\frac{5}{2}$,则双曲线的渐近线方程为(  )
A.y=±$\frac{1}{2}$xB.y=±2xC.y=±$\sqrt{3}$xD.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=ex+ax+b点(0,f(0))处的切线方程为x+y+1=0.
(Ⅰ)求a,b值,并求f(x)的单调区间;
(Ⅱ)证明:当x≥0时,f(x)>x2+4$\sqrt{x+1}$-2x-8.

查看答案和解析>>

同步练习册答案