精英家教网 > 高中数学 > 题目详情
8.点S,A,B,C在半径为$\sqrt{2}$的同一球面上,△ABC是边长为$\sqrt{3}$的正三角形,若点S到平面ABC的距离为$\frac{1}{2}$,则点S与△ABC中心的距离为(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{{\sqrt{5}}}{2}$D.1

分析 设△ABC的外接圆的圆心为M,协S作SD⊥平面ABC,交MC于D,连结OD,OS,过S作MO的垂线SE,交MO于点E,由题意求出MC=MO=1,从而得到ME=SD=$\frac{1}{2}$,进而求出MD=SE=$\frac{\sqrt{7}}{2}$,由此能求出点S与△ABC中心的距离.

解答 解:如图,∵点S、A、B、C在半径为$\sqrt{2}$的同一球面上,
点S到平面ABC的距离为$\frac{1}{2}$,AB=BC=CA=$\sqrt{3}$,
设△ABC的外接圆的圆心为M,过S作SD⊥平面ABC,交MC于D,
连结OD,OS,过S作MO的垂线SE,交MO于点E,
∴半径r=MC=$\frac{2}{\sqrt{3-\frac{3}{4}}}$=1,∴MO=$\sqrt{O{C}^{2}-M{C}^{2}}$=$\sqrt{2-1}$=1,
∵SD⊥MC,ME⊥MC,∴MESD是矩形,∴ME=SD=$\frac{1}{2}$,
∴MD=SE=$\sqrt{S{O}^{2}-O{E}^{2}}$=$\sqrt{2-\frac{1}{4}}$=$\frac{\sqrt{7}}{2}$,
∴SM=$\sqrt{S{D}^{2}+M{D}^{2}}$=$\sqrt{\frac{1}{4}+\frac{7}{4}}$=$\sqrt{2}$.
故选:B.

点评 本题考查球上的点到三角形中心的距离的求法,是中档题,解题时要认真审题,注意球的性质和空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知x、y满足线性约束条件:$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x≤2}\end{array}\right.$,则目标函数z=x-2y的最小值是(  )
A.6B.-6C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.今年NBA总决赛在勇士和骑士队之间进行.按照规则,要想获得总冠军的队伍需要在七场比赛中获胜四场(如果提前赢得比赛,则剩下的就不用继续;同时要注意的是,篮球比赛没有平局,每场必须分出胜负).假设勇士队每场比赛获胜的概率是$\frac{1}{2}$,且各场比赛获胜与否彼此独立,用X表示勇士队在整个比赛中的获胜场数,试回答以下问题:
(1)计算勇士队至少获胜一场的概率;
(2)求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知(2x+1)9=a0+a1x+a2x2+…+a9x9,其中a0,a1,a2,…,a9为常数,x∈R,则a0+a1+a2+…+a9=19683;(a1+3a3+5a5+…)2-(2a2+4a4+6a6+…)2=2125764.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,AB为⊙O的直径,C为⊙O上一点(异于A、B),AD与过点C的切线互相垂直,垂足为D,AD交⊙O于点P,过点B的切线交直线DC于点T.
(Ⅰ)证明:BC=PC;
(Ⅱ)若∠BTC=120°,AB=4,求DP•DA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\\{\;}\end{array}\right.$(t为参数,0≤α<π),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程ρ=-4cosθ,圆C的圆心到直线l的距离为$\frac{3}{2}$.
(Ⅰ)求α的值;
(Ⅱ)已知P(1,0),若直线l于圆C交于A、B两点,求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=3+2cosθ}\\{y=-4+2sinθ}\end{array}\right.$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为$ρcos(θ-\frac{π}{4})=\sqrt{2}$.
(Ⅰ)求圆C的普通方程和直线l的直角坐标方程;
(Ⅱ)设M是直线l上任意一点,过M做圆C切线,切点为A、B,求四边形AMBC面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1}{2}$sin2x-$\sqrt{3}$cos2x
(1)求f(x)的最小正周期和单调增区间;
(2)若将f(x)的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g(x)的图象,当x∈[$\frac{π}{2},π}$]时,求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.曲线$\left\{\begin{array}{l}x=5cosθ\\ y=5sinθ\end{array}\right.$($\frac{π}{3}$≤θ≤π)的长度是(  )
A.B.10πC.$\frac{5π}{3}$D.$\frac{10π}{3}$

查看答案和解析>>

同步练习册答案