分析 (1)利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性和单调性,得出结论.
(2)根据y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的定义域和值域,得出结论.
解答 解:(1)∵$f(x)=\frac{1}{2}sin2x-\sqrt{3}{cos^2}x=\frac{1}{2}sin2x-\frac{{\sqrt{3}}}{2}({1+cos2x})$=$\frac{1}{2}sin2x-\frac{{\sqrt{3}}}{2}cos2x-\frac{{\sqrt{3}}}{2}=sin({2x-\frac{π}{3}})-\frac{{\sqrt{3}}}{2}$,
因此f(x)的最小正周期为$\frac{2π}{2}$=π.
令$kπ-\frac{π}{12}≤x≤kπ+\frac{5π}{12},k∈Z$,解得$kπ-\frac{π}{12}≤x≤kπ+\frac{5π}{12},k∈Z$,
所以,f(x)的单调增区间为$[{kπ-\frac{π}{12}≤x≤kπ+\frac{5π}{12}}],k∈Z$.
(2)将f(x)的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g(x)=sin(x-$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$ 的图象,
当x∈[$\frac{π}{2},π}$]时,x-$\frac{π}{3}$∈[$\frac{π}{6}$,$\frac{2π}{3}$],
sin(x-$\frac{π}{3}$)∈[$\frac{1-\sqrt{3}}{2}$,1-$\frac{\sqrt{3}}{2}$],
即函数g(x)的值域为[$\frac{1-\sqrt{3}}{2}$,1-$\frac{\sqrt{3}}{2}$].
点评 本题主要考查三角恒等变换,正弦函数的单调性,y=Asin(ωx+φ)的图象变换规律,正弦函数的定义域和值域,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | {an}的前n项和中S3最大 | B. | {an}是递增数列 | ||
| C. | {an}中存在值为0的项 | D. | S4<S5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com