精英家教网 > 高中数学 > 题目详情
9.若抛物线y2=8x上一点P到其焦点的距离为8,则点P到其准线的距离为(  )
A.2B.4C.6D.8

分析 利用抛物线的定义可得点P到焦点的距离转化为点P到其准线的距离,即点P到抛物线准线的距离.

解答 解:由抛物线的定义可得,点P到焦点的距离等于点P到其准线的距离,
依题意点P与焦点的距离为8,
则P到准线的距离为8.
故选D.

点评 本题着重考查抛物线的定义,将点P到焦点的距离转化为点P到其准线的距离是关键,考查转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.今年NBA总决赛在勇士和骑士队之间进行.按照规则,要想获得总冠军的队伍需要在七场比赛中获胜四场(如果提前赢得比赛,则剩下的就不用继续;同时要注意的是,篮球比赛没有平局,每场必须分出胜负).假设勇士队每场比赛获胜的概率是$\frac{1}{2}$,且各场比赛获胜与否彼此独立,用X表示勇士队在整个比赛中的获胜场数,试回答以下问题:
(1)计算勇士队至少获胜一场的概率;
(2)求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=3+2cosθ}\\{y=-4+2sinθ}\end{array}\right.$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为$ρcos(θ-\frac{π}{4})=\sqrt{2}$.
(Ⅰ)求圆C的普通方程和直线l的直角坐标方程;
(Ⅱ)设M是直线l上任意一点,过M做圆C切线,切点为A、B,求四边形AMBC面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1}{2}$sin2x-$\sqrt{3}$cos2x
(1)求f(x)的最小正周期和单调增区间;
(2)若将f(x)的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g(x)的图象,当x∈[$\frac{π}{2},π}$]时,求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设a为实数,己知函数f(x)=|2x-3|+|2x+3|,且f(2a-5)=f(a),则满足条件的a构成的集合为{$\frac{5}{3}$,5}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\left\{\begin{array}{l}\sqrt{1-{x^2}},x≤1\\-{x^2}+2mx-2m+1,x>1\end{array}$,且对于任意实数a∈(0,1)关于x的方程f(x)-a=0都有四个不相等的实根x1,x2,x3,x4,则x1+x2+x3+x4的取值范围是(  )
A.(2,4]B.(-∞,0]∪[4,+∞)C.[4,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.给出下列四个命题,其中不正确的命题为(  )
A.已知cos θ•tan θ<0,那么角θ是第三或第四象限角
B.函数y=2cos(2x+$\frac{π}{3}$)的图象关于x=$\frac{π}{12}$对称
C.sin20°cos10°-cos160°sin10°=$\frac{1}{2}$
D.函数y=|sinx|是周期函数,且周期为π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.曲线$\left\{\begin{array}{l}x=5cosθ\\ y=5sinθ\end{array}\right.$($\frac{π}{3}$≤θ≤π)的长度是(  )
A.B.10πC.$\frac{5π}{3}$D.$\frac{10π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知直线L经过点P(1,1),倾斜角α=$\frac{π}{6}$.
(1)写出直线L的参数方程;
(2)设L与圆x2+y2=4相交于A、B两点,求P点到A、B两点的距离之积|PA||PB|和距离之和|PA|+|PB|.

查看答案和解析>>

同步练习册答案