| A. | 6 | B. | -6 | C. | 4 | D. | -4 |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.
解答
解:由z=x-2y得y=$\frac{1}{2}$x-$\frac{z}{2}$,
作出不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x≤2}\end{array}\right.$对应的平面区域如图(阴影部分OAB)
平移直线y=$\frac{1}{2}$x-$\frac{z}{2}$,
由图象可知当直线y=$\frac{1}{2}$x-$\frac{z}{2}$,过点A时,
直线y=$\frac{1}{2}$x-$\frac{z}{2}$的截距最大,此时z最小,
由$\left\{\begin{array}{l}{x=2}\\{x-y+1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,即A(2,3).
代入目标函数z=x-2y,
得z=2-6=-4
∴目标函数z=x-2y的最小值是-4.
故选:D.
点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{3}$=1 | B. | $\frac{{x}^{2}}{4}$-y2=1 | C. | x2-$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{2}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {a|-$\sqrt{2}$≤a<-1} | B. | {a|-$\sqrt{2}$<a≤-1} | C. | {a|-$\sqrt{2}$<a<-1} | D. | {a|-$\sqrt{2}$≤a≤-1} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {an}的前n项和中S3最大 | B. | {an}是递增数列 | ||
| C. | {an}中存在值为0的项 | D. | S4<S5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com