精英家教网 > 高中数学 > 题目详情
13.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率e=$\frac{\sqrt{5}}{2}$,点P是抛物线x2=4y上的一动点,P到双曲线C的右焦点F1(c,0)的距离与到直线y=-1的距离之和的最小值为$\sqrt{6}$,则该双曲线的方程为(  )
A.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.x2-$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{2}$=1

分析 确定抛物线的焦点坐标和准线方程,双曲线的离心率,再利用抛物线的定义,结合P到双曲线C的上焦点F1(c,0)的距离与到直线y=-1的距离之和的最小值为$\sqrt{6}$,可得FF1=$\sqrt{6}$,从而可求双曲线的几何量,从而可得结论.

解答 解:抛物线x2=4y的焦点F(0,1),准线的方程为y=-1,
双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的e=$\frac{c}{a}$=$\frac{\sqrt{5}}{2}$,
由P到双曲线C的右焦点F1(c,0)的距离与到直线y=-1的距离之和的最小值为$\sqrt{6}$,
由抛物线的定义可得P到准线的距离即为P到焦点的距离
为|PF|,
可得|PF|+|PF1|的最小值为$\sqrt{6}$,
当P,F,F1三点共线,可得最小值|FF1|=$\sqrt{1+{c}^{2}}$=$\sqrt{6}$,
即有c=$\sqrt{5}$,
由c2=a2+b2
解得a=2,b=1,
即有双曲线的方程为$\frac{{x}^{2}}{4}$-y2=1.
故选:B.

点评 本题主要考查双曲线和抛物线性质的应用,根据抛物线的性质结合抛物线的定义求出c的值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知圆C:(x+2)2+y2=4,相互垂直的两条直线l1,l2都过点A(a,0),
(1)当a=2时,若圆心为M(1,m)(m>0)的圆和圆C外切且与直线l1,l2都相切,求圆M的方程;
(2)当a=-1时,记l1,l2被圆C所截得的弦长分别为d1,d2,求:
①d12+d22的值;
②d1+d2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)是二次函数,且f(0)=-1,f(x+1)=f(x)-2x+2,则f(x)的表达式为f(x)=-x2+3x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的表面积为(  )
A.$\frac{4\sqrt{5}π+4π}{3}$B.$\frac{2\sqrt{5}π+4π}{3}$C.$\frac{12+4\sqrt{5}π+4π}{3}$D.$\frac{24+4\sqrt{5}π+4π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆C过定点A(0,p),圆心C在抛物线x2=2py(p>0)上,圆C与x轴交于M、N两点,当C在抛物线顶点时,圆C与抛物线的准线交于G、H,弦GH的长为2$\sqrt{3}$.
(1)求抛物线的解析式;
(2)当圆心C在抛物线上运动时.
①|MN|是否为定值?若是,求出该定值;若不是,请说明理由.
②记|AM|=m,|AN|=n.求$\frac{m}{n}$+$\frac{n}{m}$的最大值,并求出此时圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知全集U={1,2,3,5},M={1,3,5},N={2,3},则集合(∁UN)∩M等于(  )
A.{2}B.{1,3}C.{1,5}D.{2,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知x、y满足线性约束条件:$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x≤2}\end{array}\right.$,则目标函数z=x-2y的最小值是(  )
A.6B.-6C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=cos(2x-$\frac{π}{3}$)+2sin(x-$\frac{π}{4}$)cos(x-$\frac{π}{4}$).
(1)求函数f(x)的最小正周期和图象的对称轴方程.
(2)求函数f(x)在区间[-$\frac{π}{12}$,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知(2x+1)9=a0+a1x+a2x2+…+a9x9,其中a0,a1,a2,…,a9为常数,x∈R,则a0+a1+a2+…+a9=19683;(a1+3a3+5a5+…)2-(2a2+4a4+6a6+…)2=2125764.

查看答案和解析>>

同步练习册答案