精英家教网 > 高中数学 > 题目详情
1.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的表面积为(  )
A.$\frac{4\sqrt{5}π+4π}{3}$B.$\frac{2\sqrt{5}π+4π}{3}$C.$\frac{12+4\sqrt{5}π+4π}{3}$D.$\frac{24+4\sqrt{5}π+4π}{3}$

分析 根据三视图判断几何体是圆锥的一部分,再根据俯视图与左视图的数据可求得底面扇形的圆心角为120°,又由侧视图知几何体的高为4,底面圆的半径为2,把数据代入圆锥的表面积公式计算.

解答 解:由三视图知,该几何体是圆锥的一部分,底面为扇形,圆心角为120°,半径为2,锥体的高为4.
其表面积为:$\frac{1}{2}×2×4×2$+$\frac{1}{2}×\frac{1}{3}×2π×2×2\sqrt{5}$+$\frac{1}{3}×π×{2}^{2}$=$\frac{24+4\sqrt{5}π+4π}{3}$.
故选D.

点评 本题考查的知识点是由三视图求表面积,其中根据已知的三视图分析出几何体的形状是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知等比数列{an},前n项和Sn=3×2n+m,则其公比是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)对任意x1,x2∈[m,n]都有|f(x1)-f(x2)|≤|x1-x2|,则称f(x)为在区间[m,n]上的可控函数,区间[m,n]称为函数f(x)的“可控”区间,写出函数f(x)=2x2+x+1的一个“可控”区间是$[-\frac{1}{2},0]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义在R上的偶函数y=f(x),对任意的x∈R,都有f(x+6)=f(x)+f(3),且函数f(x)在[0,3]上为减函数,则下列结论中错误的是(  )
A.f(x)≥0
B.f(1)>f(14)
C.y=f(x)的解析式可能为y=2cos2$\frac{π}{6}$x
D.若x2+y2=9与y=f(x)有且仅有三个交点,则在[0,3]上将y=f(x)的图象沿y轴旋转一周得到的几何体的体积为9π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知i为虚部单位,若(1-i)z=2i,则z的虚部为(  )
A.-1B.-iC.1D.i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}的首项为3,{bn}为等差数列,且bn=an+1-an(n∈N*),若b3=-2,b10=12.则a10=21.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率e=$\frac{\sqrt{5}}{2}$,点P是抛物线x2=4y上的一动点,P到双曲线C的右焦点F1(c,0)的距离与到直线y=-1的距离之和的最小值为$\sqrt{6}$,则该双曲线的方程为(  )
A.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.x2-$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{2}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)是定义在R上的奇函数,当x∈(0,1)时,f(x)=x+a,如果函数f(x)的图象与圆x2+y2=1的交点个数为4,则a的取值范围为(  )
A.{a|-$\sqrt{2}$≤a<-1}B.{a|-$\sqrt{2}$<a≤-1}C.{a|-$\sqrt{2}$<a<-1}D.{a|-$\sqrt{2}$≤a≤-1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.观察下式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,则第n个式子是(  )
A.n+(n+1)+(n+2)+…+(2n-1)=n2B.n+(n+1)+(n+2)+…+(2n-1)=(2n-1)2
C.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2D.n+(n+1)+(n+2)+…+(3n-1)=(2n-1)2

查看答案和解析>>

同步练习册答案