精英家教网 > 高中数学 > 题目详情
6.已知数列{an}的首项为3,{bn}为等差数列,且bn=an+1-an(n∈N*),若b3=-2,b10=12.则a10=21.

分析 利用等差数的通项公式可得bn,再利用“累加求和”方法与等差数列的求和公式即可得出an

解答 解:设等差数列{bn}的公差为d,∵b3=-2,b10=12.∴b1+2d=-2,b1+9d=12,解得b1=-6,d=2.∴bn=-6+2(n-1)=2n-8.
∵bn=an+1-an(n∈N*),
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=(2n-10)+(2n-12)+…+(-6)+3
=$\frac{(n-1)(-6+2n-10)}{2}$+3
=n2-9n+11.
当n=10时,a10=102-9×10+11=21.
故答案为:21.

点评 本题考查了等差数列的通项公式及其求和公式、“累加求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(2cos x,sin x),$\overrightarrow{b}$=(cos x,-2cos x).设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$
(1)求f(x)的解析式
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\sqrt{3}$sin2x+2sin2x.
(1)求函数y=f(x)的最小正周期及单调增区间;
(2)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.经过两点A(2,1),B(1,m2)的直线l的倾斜角为锐角,则m的取值范围是(  )
A.m<1B.m>-1C.-1<m<1D.m>1或m<-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的表面积为(  )
A.$\frac{4\sqrt{5}π+4π}{3}$B.$\frac{2\sqrt{5}π+4π}{3}$C.$\frac{12+4\sqrt{5}π+4π}{3}$D.$\frac{24+4\sqrt{5}π+4π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=sin(ωx+φ)(ω>0)图象的两条相邻的对称轴之间的距离为$\frac{π}{2}$.若角φ的终边经过点P(-1,2),则f($\frac{5π}{4}$)=(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{5}$C.-$\frac{2\sqrt{5}}{5}$D.-$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知全集U={1,2,3,5},M={1,3,5},N={2,3},则集合(∁UN)∩M等于(  )
A.{2}B.{1,3}C.{1,5}D.{2,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)是定义在R上的偶函数,对任意x∈R,都有f(x)=f(x+4),且当x∈[-2,0]时,f(x)=(${\frac{1}{2}$)x-1,若在区间(-2,6)内关于x的方程f(x)-loga(x+2)=0(a>1)恰有三个不同的实数根,则a的取值范围是(  )
A.(${\sqrt{3}$,0)B.(${\root{3}{4}$,2]C.[${\root{3}{4}$,2)D.[${\root{3}{4}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设非零实数a,b满足a<b,则下列不等式中一定成立的是(  )
A.a+b>0B.a-b<0C.$\frac{1}{a}$>$\frac{1}{b}$D.ab<b2

查看答案和解析>>

同步练习册答案