精英家教网 > 高中数学 > 题目详情
15.设函数f(x)是定义在R上的偶函数,对任意x∈R,都有f(x)=f(x+4),且当x∈[-2,0]时,f(x)=(${\frac{1}{2}$)x-1,若在区间(-2,6)内关于x的方程f(x)-loga(x+2)=0(a>1)恰有三个不同的实数根,则a的取值范围是(  )
A.(${\sqrt{3}$,0)B.(${\root{3}{4}$,2]C.[${\root{3}{4}$,2)D.[${\root{3}{4}$,2]

分析 由f(x)=f(x+4),推出函数的周期是4,根据函数f(x)是偶函数,得到函数f(x)在一个周期内的图象,利用方程和函数之间的关系,转化为两个函数的交点个数问题,利用数形结合确定满足的条件即可得到结论.

解答 解:由f(x)=f(x+4),得函数f(x)的周期为4,
∵当x∈[-2,0]时,f(x)=(${\frac{1}{2}$)x-1,
∴若x∈[0,2],则-x∈[-2,0],
则f(-x)=(${\frac{1}{2}$)-x-1=2x-1,
∵f(x)是偶函数,
∴f(-x)=(${\frac{1}{2}$)-x-1=2x-1=f(x),
即f(x)=2x-1,x∈[0,2],
由f(x)-loga(x+2)=0得f(x)=loga(x+2),
作出函数f(x)的图象如图:当a>1时,在区间(-2,6)要使方程f(x)-loga(x+2)=0恰有3个不同的实数根,
则等价为函数f(x)与g(x)=loga(x+2)有3个不同的交点,
则满足$\left\{\begin{array}{l}{g(2)<f(2)}\\{g(6)≥f(6)}\end{array}\right.$,即$\left\{\begin{array}{l}{lo{g}_{a}4<3}\\{lo{g}_{a}8≥3}\end{array}\right.$,即$\left\{\begin{array}{l}{a>\root{3}{4}}\\{a≤2}\end{array}\right.$,
解得${\root{3}{4}$<a≤2,
故a的取值范围是(${\root{3}{4}$,2],
故选:B.

点评 本题主要考查函数零点的个数判断,利用函数和方程之间的关系转化为两个函数的交点个数问题,利用分段函数的表达式,作出函数f(x)的图象是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=xlnx,g(x)=(-x2+ax-3)ex(a为实数).
(1)当a=5时,求函数y=g(x)在x=1处的切线方程;
(2)若方程g(x)=2exf(x)在x∈[$\frac{1}{e}$,e]上有两个不相等的实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}的首项为3,{bn}为等差数列,且bn=an+1-an(n∈N*),若b3=-2,b10=12.则a10=21.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设△ABC的内角A、B、C的对应边分别为a、b、c,若向量$\overrightarrow{m}$=(a-b,1)与向量$\overrightarrow{n}$=(a-c,2)共线,且∠A=120°.
(1)a:b:c;
(2)若△ABC外接圆的半径为14,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)是定义在R上的奇函数,当x∈(0,1)时,f(x)=x+a,如果函数f(x)的图象与圆x2+y2=1的交点个数为4,则a的取值范围为(  )
A.{a|-$\sqrt{2}$≤a<-1}B.{a|-$\sqrt{2}$<a≤-1}C.{a|-$\sqrt{2}$<a<-1}D.{a|-$\sqrt{2}$≤a≤-1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设双曲线$\frac{x^2}{m}+\frac{y^2}{n}$=1的离心率为2,且一个焦点F(2,0),则此双曲线的方程为(  )
A.${x^2}-\frac{y^2}{3}=1$B.${y^2}-\frac{x^2}{3}=1$C.$\frac{x^2}{12}-\frac{y^2}{4}=1$D.$\frac{y^2}{12}-\frac{x^2}{4}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=lnx+$\frac{a}{x}$.
(1)若曲线y=f(x)(0<x<3)上任意一点P(x0,y0)处切线的斜率k≤$\frac{1}{2}$恒成立,求实数a的取值范围;
(2)若方程f(x)-$\frac{a}{x}$+x=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设抛物线C:y2=4x的焦点为F,其准线与x轴交点为P,过点F作直线与抛物线C交于点A,B,若AB⊥PB,则|AF|-|BF|=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C1的极坐标方程为:ρ2cos2θ+3ρ2sin2θ=3,曲线C2的参数方程是$\left\{\begin{array}{l}{x=-\sqrt{3}t}\\{y=1+t}\end{array}\right.$(t为参数).
(1)求曲线C1和C2的直角坐标方程;
(1)设曲线C1和C2交于两点A,B,求以线段AB为直径的圆的直角坐标方程.

查看答案和解析>>

同步练习册答案