| A. | (${\sqrt{3}$,0) | B. | (${\root{3}{4}$,2] | C. | [${\root{3}{4}$,2) | D. | [${\root{3}{4}$,2] |
分析 由f(x)=f(x+4),推出函数的周期是4,根据函数f(x)是偶函数,得到函数f(x)在一个周期内的图象,利用方程和函数之间的关系,转化为两个函数的交点个数问题,利用数形结合确定满足的条件即可得到结论.
解答
解:由f(x)=f(x+4),得函数f(x)的周期为4,
∵当x∈[-2,0]时,f(x)=(${\frac{1}{2}$)x-1,
∴若x∈[0,2],则-x∈[-2,0],
则f(-x)=(${\frac{1}{2}$)-x-1=2x-1,
∵f(x)是偶函数,
∴f(-x)=(${\frac{1}{2}$)-x-1=2x-1=f(x),
即f(x)=2x-1,x∈[0,2],
由f(x)-loga(x+2)=0得f(x)=loga(x+2),
作出函数f(x)的图象如图:当a>1时,在区间(-2,6)要使方程f(x)-loga(x+2)=0恰有3个不同的实数根,
则等价为函数f(x)与g(x)=loga(x+2)有3个不同的交点,
则满足$\left\{\begin{array}{l}{g(2)<f(2)}\\{g(6)≥f(6)}\end{array}\right.$,即$\left\{\begin{array}{l}{lo{g}_{a}4<3}\\{lo{g}_{a}8≥3}\end{array}\right.$,即$\left\{\begin{array}{l}{a>\root{3}{4}}\\{a≤2}\end{array}\right.$,
解得${\root{3}{4}$<a≤2,
故a的取值范围是(${\root{3}{4}$,2],
故选:B.
点评 本题主要考查函数零点的个数判断,利用函数和方程之间的关系转化为两个函数的交点个数问题,利用分段函数的表达式,作出函数f(x)的图象是解决本题的关键.综合性较强,难度较大.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {a|-$\sqrt{2}$≤a<-1} | B. | {a|-$\sqrt{2}$<a≤-1} | C. | {a|-$\sqrt{2}$<a<-1} | D. | {a|-$\sqrt{2}$≤a≤-1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${x^2}-\frac{y^2}{3}=1$ | B. | ${y^2}-\frac{x^2}{3}=1$ | C. | $\frac{x^2}{12}-\frac{y^2}{4}=1$ | D. | $\frac{y^2}{12}-\frac{x^2}{4}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com