精英家教网 > 高中数学 > 题目详情
4.设抛物线C:y2=4x的焦点为F,其准线与x轴交点为P,过点F作直线与抛物线C交于点A,B,若AB⊥PB,则|AF|-|BF|=(  )
A.2B.4C.6D.8

分析 设出直线方程,并与抛物线方程联立,借助于求出点A,B的横坐标,利用抛物线的定义,即可求出|AF|-|BF|.

解答 解:y2=4x的焦点为F(1,0),
假设k存在,设AB方程为:y=k(x-1),
与抛物线y2=4x,联立得k2(x2-2x+1)=4x,即k2x2-(2k2+4)x+k2=0,
设两交点为A(x2,y2),B(x1,y1),
∵∠PBF=90°,
∴(x1-1)(x1+1)+y12=0,
∴x12+y12=1,
∴x12+4x1-1=0(x1>0),
∴x1=-2+$\sqrt{5}$,
∵x1x2=1,∴x2=2+$\sqrt{5}$,
∴|AF|-|BF|=(x2+1)-(x1+1)=4,
故答案选:B.

点评 本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.经过两点A(2,1),B(1,m2)的直线l的倾斜角为锐角,则m的取值范围是(  )
A.m<1B.m>-1C.-1<m<1D.m>1或m<-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)是定义在R上的偶函数,对任意x∈R,都有f(x)=f(x+4),且当x∈[-2,0]时,f(x)=(${\frac{1}{2}$)x-1,若在区间(-2,6)内关于x的方程f(x)-loga(x+2)=0(a>1)恰有三个不同的实数根,则a的取值范围是(  )
A.(${\sqrt{3}$,0)B.(${\root{3}{4}$,2]C.[${\root{3}{4}$,2)D.[${\root{3}{4}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.数列{an}满足a1=$\frac{1}{4}$,an=$\frac{{a}_{n-1}}{(-1)^{n}{a}_{n-1}-2}$(n≥2,n∈N). 令bn=ansin$\frac{(2n-1)π}{2}$
(1)证明:数列{${\frac{1}{a_n}$+(-1)n}为等比数列;
(2)设cn=$\frac{2}{3}$n•(${\frac{1}{b_n}$-1),求数列{cn}的前n项和Sn
(3)数列{bn}的前n项和为Tn.求证:对任意的n∈N*,Tn<$\frac{4}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设Sn为数列{an}的前n项和,已知a1≠0,2an-a1=S1•Sn(n∈N*).
(1)试求a1之值,并确定数列{an}的通项公式;
(2)若数列{bn}满足bn=$\frac{1}{(lo{g}_{2}{a}_{n+1})•(lo{g}_{2}{a}_{n+2})}$,n∈N*,试求{bn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=(  ) m.
A.$100\sqrt{3}$B.$100\sqrt{6}$C.100D.$100\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设非零实数a,b满足a<b,则下列不等式中一定成立的是(  )
A.a+b>0B.a-b<0C.$\frac{1}{a}$>$\frac{1}{b}$D.ab<b2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,直线AB经过圆O上的点C,并且OA=OB,CA=CB,圆O交直线OB于点E、D,连接EC,CD.若tan∠CED=$\frac{1}{2}$,⊙O的半径为3.
(1)证明:BC2=BD•BE
(2)求OA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.把2进制数101101化成10进制数是多少(  )
A.45B.48C.25D.28

查看答案和解析>>

同步练习册答案