精英家教网 > 高中数学 > 题目详情
16.设非零实数a,b满足a<b,则下列不等式中一定成立的是(  )
A.a+b>0B.a-b<0C.$\frac{1}{a}$>$\frac{1}{b}$D.ab<b2

分析 利用不等式的基本性质及其a,b的正负即可判断出结论.

解答 解:∵a<b,则a-b<0,a+b与0的大小关系不确定,$\frac{1}{a}$与$\frac{1}{b}$的大小关系不确定,ab与b2的大小关系不确定,
故选:B.

点评 本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知数列{an}的首项为3,{bn}为等差数列,且bn=an+1-an(n∈N*),若b3=-2,b10=12.则a10=21.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=lnx+$\frac{a}{x}$.
(1)若曲线y=f(x)(0<x<3)上任意一点P(x0,y0)处切线的斜率k≤$\frac{1}{2}$恒成立,求实数a的取值范围;
(2)若方程f(x)-$\frac{a}{x}$+x=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设抛物线C:y2=4x的焦点为F,其准线与x轴交点为P,过点F作直线与抛物线C交于点A,B,若AB⊥PB,则|AF|-|BF|=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.观察下式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,则第n个式子是(  )
A.n+(n+1)+(n+2)+…+(2n-1)=n2B.n+(n+1)+(n+2)+…+(2n-1)=(2n-1)2
C.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2D.n+(n+1)+(n+2)+…+(3n-1)=(2n-1)2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.f(x)=xsinx-cosx,则f'(x)=2sinx+xcosx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线l:$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\sqrt{3}+\frac{{\sqrt{3}}}{2}t\end{array}\right.(t$为参数),以坐标原点为极点,x轴的非负半轴为极轴且两坐标系中具有相同的长度单位,建立极坐标系,曲线C的极坐标方程为ρ2-2$\sqrt{3}$ρsinθ=a(a>-3)
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)若曲线C与直线l有唯一公共点,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C1的极坐标方程为:ρ2cos2θ+3ρ2sin2θ=3,曲线C2的参数方程是$\left\{\begin{array}{l}{x=-\sqrt{3}t}\\{y=1+t}\end{array}\right.$(t为参数).
(1)求曲线C1和C2的直角坐标方程;
(1)设曲线C1和C2交于两点A,B,求以线段AB为直径的圆的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示的几何体中,四边形CDEF为正方形,四边形ABCD为等腰梯形,AB∥CD,AC=$\sqrt{3}$,AB=2BC=2,AC⊥FB.
(1)求证:AC⊥DE;
(2)求点C到平面BDF的距离.

查看答案和解析>>

同步练习册答案