18£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ£º¦Ñ2cos2¦È+3¦Ñ2sin2¦È=3£¬ÇúÏßC2µÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=-\sqrt{3}t}\\{y=1+t}\end{array}\right.$£¨tΪ²ÎÊý£©£®
£¨1£©ÇóÇúÏßC1ºÍC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨1£©ÉèÇúÏßC1ºÍC2½»ÓÚÁ½µãA£¬B£¬ÇóÒÔÏß¶ÎABΪֱ¾¶µÄÔ²µÄÖ±½Ç×ø±ê·½³Ì£®

·ÖÎö £¨I£©°Ñx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬´úÈëÇúÏߦÑ2cos2¦È+3¦Ñ2sin2¦È=3¼´¿É»¯ÎªÖ±½Ç×ø±ê·½³Ì£®ÇúÏßC2²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=-\sqrt{3}t}\\{y=1+t}\end{array}\right.$£¨tΪ²ÎÊý£© ÏûÈ¥²ÎÊý»¯ÎªÖ±½Ç×ø±ê·½³Ì£®
£¨II£©Ö±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃ½»µã×ø±ê£¬ÀûÓÃÖеã×ø±ê¹«Ê½¡¢Ô²µÄ±ê×¼·½³Ì¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨I£©ÇúÏߦÑ2cos2¦È+3¦Ñ2sin2¦È=3»¯ÎªÖ±½Ç×ø±ê·½³ÌΪ£ºx2+3y2=3£¬¼´$\frac{{x}^{2}}{3}+{y}^{2}$=1£»
ÇúÏßC2²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=-\sqrt{3}t}\\{y=1+t}\end{array}\right.$£¨tΪ²ÎÊý£© »¯ÎªÖ±½Ç×ø±ê·½³ÌΪ£ºx=-$\sqrt{3}$£¨y-1£©£¬¼´x+$\sqrt{3}$y-$\sqrt{3}$=0£®
£¨II£©$\left\{\begin{array}{l}{{x}^{2}+3{y}^{2}=3}\\{x=-\sqrt{3}£¨y-1£©}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$£¬$\left\{\begin{array}{l}{x=\sqrt{3}}\\{y=0}\end{array}\right.$
¼´A£¨0£¬1£©£¬B£¨$\sqrt{3}$£¬0£©£¬Ïß¶ÎABµÄÖеãΪM$£¨\frac{\sqrt{3}}{2}£¬\frac{1}{2}£©$£¬Ôò
ÒÔÏß¶ÎABΪֱ¾¶µÄÔ²µÄÖ±½Ç×ø±ê·½³ÌΪ $£¨x-\frac{\sqrt{3}}{2}£©^{2}+£¨y-\frac{1}{2}£©^{2}$=1£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê»¯ÎªÖ±½Ç×ø±ê¡¢Èý½Çº¯ÊýÇóÖµ¡¢Öеã×ø±ê¹«Ê½¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®É躯Êýf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý£¬¶ÔÈÎÒâx¡ÊR£¬¶¼ÓÐf£¨x£©=f£¨x+4£©£¬ÇÒµ±x¡Ê[-2£¬0]ʱ£¬f£¨x£©=£¨${\frac{1}{2}$£©x-1£¬ÈôÔÚÇø¼ä£¨-2£¬6£©ÄÚ¹ØÓÚxµÄ·½³Ìf£¨x£©-loga£¨x+2£©=0£¨a£¾1£©Ç¡ÓÐÈý¸ö²»Í¬µÄʵÊý¸ù£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨${\sqrt{3}$£¬0£©B£®£¨${\root{3}{4}$£¬2]C£®[${\root{3}{4}$£¬2£©D£®[${\root{3}{4}$£¬2]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Éè·ÇÁãʵÊýa£¬bÂú×ãa£¼b£¬ÔòÏÂÁв»µÈʽÖÐÒ»¶¨³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®a+b£¾0B£®a-b£¼0C£®$\frac{1}{a}$£¾$\frac{1}{b}$D£®ab£¼b2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬Ö±ÏßAB¾­¹ýÔ²OÉϵĵãC£¬²¢ÇÒOA=OB£¬CA=CB£¬Ô²O½»Ö±ÏßOBÓÚµãE¡¢D£¬Á¬½ÓEC£¬CD£®Èôtan¡ÏCED=$\frac{1}{2}$£¬¡ÑOµÄ°ë¾¶Îª3£®
£¨1£©Ö¤Ã÷£ºBC2=BD•BE
£¨2£©ÇóOAµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Ö±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=1+tcos¦Á}\\{y=tsin¦Á}\\{\;}\end{array}\right.$£¨tΪ²ÎÊý£¬0¡Ü¦Á£¼¦Ð£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ô²CµÄ¼«×ø±ê·½³Ì¦Ñ=-4cos¦È£¬Ô²CµÄÔ²Ðĵ½Ö±ÏßlµÄ¾àÀëΪ$\frac{3}{2}$£®
£¨¢ñ£©Çó¦ÁµÄÖµ£»
£¨¢ò£©ÒÑÖªP£¨1£¬0£©£¬ÈôÖ±ÏßlÓÚÔ²C½»ÓÚA¡¢BÁ½µã£¬Çó$\frac{1}{|PA|}$+$\frac{1}{|PB|}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬ÒÑÖªABÊÇ¡ÑOµÄÏÒ£¬PÊÇABÉÏÒ»µã£®
£¨¢ñ£©ÈôAB=6$\sqrt{2}$£¬PA=4$\sqrt{2}$£¬OP=3£¬Çó¡ÑOµÄ°ë¾¶£»
£¨¢ò£©ÈôCÊÇÔ²OÉÏÒ»µã£¬ÇÒCA=CB£¬Ïß¶ÎCE½»ABÓÚD£®ÇóÖ¤£º¡÷CAD¡«¡÷CEA£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èçͼ£¬¡ÏBACµÄƽ·ÖÏßÓëBCºÍ¡÷ABCµÄÍâ½ÓÔ²·Ö±ðÏཻÓÚDºÍE£¬ÑÓ³¤AC½»¹ýD£¬E£¬CÈýµãµÄÔ²ÓÚµãF£®
£¨1£©ÇóÖ¤£ºEC=EF£»
£¨2£©ÈôED=2£¬EF=3£¬ÇóAC•AFµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®°Ñ2½øÖÆÊý101101»¯³É10½øÖÆÊýÊǶàÉÙ£¨¡¡¡¡£©
A£®45B£®48C£®25D£®28

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÈçͼËùʾ£¬³ÌÐò¿òͼµÄÊä³ö½á¹ûÊÇ£¨¡¡¡¡£©
A£®7B£®8C£®9D£®11

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸