精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=xlnx,g(x)=(-x2+ax-3)ex(a为实数).
(1)当a=5时,求函数y=g(x)在x=1处的切线方程;
(2)若方程g(x)=2exf(x)在x∈[$\frac{1}{e}$,e]上有两个不相等的实数根,求实数a的取值范围.

分析 (1)当a=5代入求得g(x)的解析式,求出导数,求得g(1)和切线斜率k=g′(1),由直线方程的点斜式求得切线方程;
(2)把f(x)和g(x)的解析式代入g(x)=2exf(x)分离变量a,构造辅助函数,求得x∈[$\frac{1}{e}$,e]在的最大和最小值,即可求得实数a的取值范围.

解答 解:(1)当a=5,g(x)=(-x2+5x-3)ex
g′(x)=(-x2+3x+2)ex
∴在x=1处切线的斜率为k=g′(1)=4e.
g(1)=e,…(4分)
所以切线方程为:y-e=4e(x-1),即y-4ex+3e=0.…(6分)
(2)由g(x)=2exf(x),x∈[$\frac{1}{e}$,e]可得:2xlnx=-x2+ax-3,
a=x+2lnx+$\frac{3}{x}$,…(8分)
令h(x)=x+2lnx+$\frac{3}{x}$,h′(x)=1+$\frac{2}{x}$-$\frac{3}{{x}^{2}}$=$\frac{(x+3)(x-1)}{{x}^{2}}$.

x($\frac{1}{e}$,1)1(1,e)
h′(x)=-0+
h(x)单调递减极小值(最小值)单调递增
…(10分)
h($\frac{1}{e}$)=$\frac{1}{e}$+3e-2,h(1)=4,h(e)=$\frac{3}{e}$+e+2,
h(e)-h($\frac{1}{e}$)=4-2e+$\frac{2}{e}$<0.
∴实数a的取值范围为4<a≤$\frac{3}{e}$+e+2.…(12分)

点评 本题考查了导数在求函数最值中的应用,考查利用导函数求函数的单调性,构造辅助函数求含字母系数的范围问题,考查分析问题及解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.如图,P为⊙O外一点,PA是⊙O的切线,A为切点,割线PBC与⊙O相交于B,C两点,且PC=3PA,D为线段BC的中点,AD的延长线交⊙O于点E.若PB=1,则PA的长为3;AD•DE的值是16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(2cos x,sin x),$\overrightarrow{b}$=(cos x,-2cos x).设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$
(1)求f(x)的解析式
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若不等式$\frac{kx+2k}{{k}^{2}}$>1+$\frac{x-3}{{k}^{2}}$的解为x>3,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为了做好“双11”促销活动,某电商打算将进行促销活动的礼品重新包装,设计方案如下:将一块边长为20cm的正方形纸片ABCD剪去四个全等的等腰三角形△SEE′,△SFF′,△SGG′,△SHH′,再将剩下的阴影部分折成一个四棱锥形状的礼品袋S-EFGH,其中A,B,C,D重合于点O,E与E′重合,F与F′重合,G与G′重合,H与H′重合(如图所示),设AE=BE′=x(cm).
(1)求证:平面SEG⊥平面SFH;
(2)若电商要求礼品袋的侧面积不少于128cm2,试求x的取值范围;
(3)当x=5时,该电商打算将礼品袋S-EFGH全部放入一个球形状的包装盒内密封,求包装盒的内径R的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.数列{an}、{bn}满足:an+bn=2n-1,n∈N*
(1)若{an}的前n项和Sn=2n2-n,求{an}、{bn}的通项公式;
(2)若an=k•2n-1,n∈N*,数列{bn}是单调递减数列,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\sqrt{3}$sin2x+2sin2x.
(1)求函数y=f(x)的最小正周期及单调增区间;
(2)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.经过两点A(2,1),B(1,m2)的直线l的倾斜角为锐角,则m的取值范围是(  )
A.m<1B.m>-1C.-1<m<1D.m>1或m<-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)是定义在R上的偶函数,对任意x∈R,都有f(x)=f(x+4),且当x∈[-2,0]时,f(x)=(${\frac{1}{2}$)x-1,若在区间(-2,6)内关于x的方程f(x)-loga(x+2)=0(a>1)恰有三个不同的实数根,则a的取值范围是(  )
A.(${\sqrt{3}$,0)B.(${\root{3}{4}$,2]C.[${\root{3}{4}$,2)D.[${\root{3}{4}$,2]

查看答案和解析>>

同步练习册答案