分析 (1)利用二倍角余弦公式及变形,两角差的正弦公式化简解析式,由三角函数的周期公式求出f(x)的最小正周期,由正弦函数的增区间求出f(x)的增区间;
(2)由x∈[0,$\frac{π}{2}$]求出2x-$\frac{π}{6}$的范围,由正弦函数的图象与性质求出函数f(x)的值域.
解答 解:(1)由题意得,f(x)=$\sqrt{3}$sin2x+2sin2x
=$\sqrt{3}$sin2x+1-cos2x=$2sin(2x-\frac{π}{6})+1$,
∴f(x)的最小正周期T=$\frac{2π}{2}=π$,
由$-\frac{π}{2}+2kπ≤2x-\frac{π}{6}≤\frac{π}{2}+2kπ(k∈Z)$得,
$-\frac{π}{6}+kπ≤x≤\frac{π}{3}+kπ(k∈Z)$,
∴f(x)单调增区间是$[-\frac{π}{6}+kπ,\frac{π}{3}+kπ](k∈Z)$;
(2)由x∈[0,$\frac{π}{2}$]得,2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
∴$sin(2x-\frac{π}{6})∈[-\frac{1}{2},1]$,则$2sin(2x-\frac{π}{6})+1∈[0,3]$,
∴函数f(x)的值域是[0,3].
点评 本题考查了二倍角余弦公式及变形,两角差的正弦公式,以及正弦函数的图象与性质,考查整体思想,化简、变形能力.
科目:高中数学 来源: 题型:解答题
| 阅读过莫言的 作品数(篇) | 0~25 | 26~50 | 51~75 | 76~100 | 101~130 |
| 男生 | 3 | 6 | 11 | 18 | 12 |
| 女生 | 4 | 8 | 13 | 15 | 10 |
| 非常了解 | 一般了解 | 合计 | |
| 男生 | |||
| 女生 | |||
| 合计 |
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0,2,4} | B. | {2,4} | C. | {0,3,4} | D. | {3,4} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)≥0 | |
| B. | f(1)>f(14) | |
| C. | y=f(x)的解析式可能为y=2cos2$\frac{π}{6}$x | |
| D. | 若x2+y2=9与y=f(x)有且仅有三个交点,则在[0,3]上将y=f(x)的图象沿y轴旋转一周得到的几何体的体积为9π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com