精英家教网 > 高中数学 > 题目详情
18.已知全集U={1,2,3,5},M={1,3,5},N={2,3},则集合(∁UN)∩M等于(  )
A.{2}B.{1,3}C.{1,5}D.{2,5}

分析 由全集U以及N,求出N的补集,找出N补集与M的交集即可.

解答 解:∵全集U={1,2,3,5},M={1,3,5},N={2,3},
∴∁UN={1,5},
则(∁UN)∩M={1,5},
故选:C.

点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.大家知道,莫言是中国首位获得诺贝尔奖的文学家,国人欢欣鼓舞.某高校文学社从男女生中各抽取50名同学调查对莫言作品的了解程度,结果如表:
阅读过莫言的
作品数(篇)
0~2526~5051~7576~100101~130
男生36111812
女生48131510
(1)试估计该校学生阅读莫言作品超过50篇的概率;
(2)对莫言作品阅读超过75篇的则称为“对莫言作品非常了解”,否则为“一般了解”.根据题意完成下表,并判断能否在犯错误的概率不超过0.25的前提下,认为对莫言作品非常了解与性别有关?
非常了解一般了解合计
男生
女生
合计
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
P(K2≥k00.500.400.250.150.100.050.0250.010
k00.4550.7081.3232.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义在R上的偶函数y=f(x),对任意的x∈R,都有f(x+6)=f(x)+f(3),且函数f(x)在[0,3]上为减函数,则下列结论中错误的是(  )
A.f(x)≥0
B.f(1)>f(14)
C.y=f(x)的解析式可能为y=2cos2$\frac{π}{6}$x
D.若x2+y2=9与y=f(x)有且仅有三个交点,则在[0,3]上将y=f(x)的图象沿y轴旋转一周得到的几何体的体积为9π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}的首项为3,{bn}为等差数列,且bn=an+1-an(n∈N*),若b3=-2,b10=12.则a10=21.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率e=$\frac{\sqrt{5}}{2}$,点P是抛物线x2=4y上的一动点,P到双曲线C的右焦点F1(c,0)的距离与到直线y=-1的距离之和的最小值为$\sqrt{6}$,则该双曲线的方程为(  )
A.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.x2-$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{2}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设△ABC的内角A、B、C的对应边分别为a、b、c,若向量$\overrightarrow{m}$=(a-b,1)与向量$\overrightarrow{n}$=(a-c,2)共线,且∠A=120°.
(1)a:b:c;
(2)若△ABC外接圆的半径为14,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)是定义在R上的奇函数,当x∈(0,1)时,f(x)=x+a,如果函数f(x)的图象与圆x2+y2=1的交点个数为4,则a的取值范围为(  )
A.{a|-$\sqrt{2}$≤a<-1}B.{a|-$\sqrt{2}$<a≤-1}C.{a|-$\sqrt{2}$<a<-1}D.{a|-$\sqrt{2}$≤a≤-1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=lnx+$\frac{a}{x}$.
(1)若曲线y=f(x)(0<x<3)上任意一点P(x0,y0)处切线的斜率k≤$\frac{1}{2}$恒成立,求实数a的取值范围;
(2)若方程f(x)-$\frac{a}{x}$+x=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线l:$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\sqrt{3}+\frac{{\sqrt{3}}}{2}t\end{array}\right.(t$为参数),以坐标原点为极点,x轴的非负半轴为极轴且两坐标系中具有相同的长度单位,建立极坐标系,曲线C的极坐标方程为ρ2-2$\sqrt{3}$ρsinθ=a(a>-3)
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)若曲线C与直线l有唯一公共点,求实数a的值.

查看答案和解析>>

同步练习册答案