精英家教网 > 高中数学 > 题目详情
已知等比数列{an}的各项均为正数,且a1+2a2=1,a32=4a2a6
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{an•bn}的前n项和Sn
考点:数列的求和,数列递推式
专题:综合题,等差数列与等比数列
分析:(Ⅰ)设数列{an}的公比为q,通过解方程组可求得a1与q,从而可求数列{an}的通项公式;
(Ⅱ)利用错位相减法可求得数列{an•bn}的前n项和Sn
解答: 解:(Ⅰ)设数列{an}的公比为q,由
a
2
3
=4a2a6
a
2
3
=4
a
2
4
,所以q2=
1
4

由条件可知q>0,故q=
1
2

a1+2a2=1⇒a1+2a1•q=1⇒a1=
1
2

故数列{an}的通项公式为an=a1qn-1=
1
2n

(Ⅱ)bn=log2an=log2(
1
2
)n=-n
,故anbn=-n•(
1
2
)n

从而Sn=a1•b1+a2•b2+…+an-1•bn-1+an•bn=-[1•
1
2
+2•(
1
2
)2+…+(n-1)•(
1
2
)n-1+n•(
1
2
)n]

1
2
Sn=-[1•(
1
2
)2+2•(
1
2
)3+…+(n-1)•(
1
2
)n+n•(
1
2
)n+1]

两式相减得
1
2
Sn=-[
1
2
+(
1
2
)2+(
1
2
)3+…+(
1
2
)n-n•(
1
2
)n+1]
=-
1
2
[1-(
1
2
)
n
]
1-
1
2
+n•(
1
2
)n+1=
n+2
2
•(
1
2
)n-
1
2

所以数列{an•bn}的前n项和Sn=(n+2)•(
1
2
)n-1
点评:本题考查数列的求和,考查等比数列的通项公式与求和公式的综合应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

当x∈R,|x|<1时,有如下表达式:1+x+x2+…+xn+…=
1
1-x
,两边同时积分得:
1
2
0
ldx+
1
2
0
xdx+
1
2
0
x2dx+…+
1
2
0
xndx+…=
1
2
0
1
1-x
dx,从而得到如下等式:1×
1
2
+
1
2
×
1
2
2+
1
3
×(
1
2
3+…+
1
n+1
×(
1
2
n+1+…=ln2,请根据以上材料所蕴含的数学思想方法,计算:C
 
0
n
×
1
2
+
1
2
C
 
1
n
×(
1
2
2+
1
3
C
2
n
×(
1
2
3+…+
1
n+1
C
n
n
×(
1
2
n+1=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点F与抛物线y2=-4x的焦点重合,直线x-y+
2
2
=0与以原点O为圆心,以椭圆的离心率e为半径的圆相切.
(1)求该椭圆C的方程;
(2)过点F的直线交椭圆于A,B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点.记△GFD的面积为S1,△OED的面积为S2.试问:是否存在直线AB,使得S1=S2?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=4,公比q≠1的等比数列,Sn是其前n项和,且4a1,a5,-2a3成等差数列.
(1)求公比q的值;
(2)求Tn=a2+a4+…+a2n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

直三棱柱ABC-A1B1C1的直观图(图1)及三视图(图2)如图所示,D为AC的中点
(1)求证:AB1∥平面BDC1
(2)求证:BD⊥AC1
(3)求直三棱柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=2
2
,PA=2,
(1)求PC与平面ABCD所成角的大小;
(2)求三棱锥P-ABE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点为F(3,0),其短轴上的一个端点到F的距离为5.
(1)求椭圆C的方程;
(2)若点P是椭圆C上的动点,点M满足|
MF
|=1且
MP
MF
=0,求|
PM
|的最小值;
(3)设椭圆C的上下顶点分别为A1、A2,点Q是椭圆上异于A1、A2的任一点,直线QA1、QA2分别于x轴交于点D、E,若直线OT与过点D、E的圆相切,切点为T,试探究线段OT的长是否为定值?若是定值,求出该定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点.
(1)求证:D1F⊥平面ADE;
(2)若AB=1,求三棱锥D1-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知ex>xm对任意x∈(1,+∞)恒成立,则实数m的取值范围是
 

查看答案和解析>>

同步练习册答案