设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.
(1)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(2)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;
(3)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列.
科目:高中数学 来源: 题型:解答题
如图,从参加环保知识竞赛的学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:
(1)这一组的频数、频率分别是多少?
(2)估计这次环保知识竞赛成绩的平均数、众数、中位数。(不要求写过程)
(3) 从成绩是80分以上(包括80分)的学生中选两人,求他们在同一分数段的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
下图是某市3月1日至14日空气质量指数趋势图,空气质量指数小于1 00表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1曰至3月1 3日中某一天到达该市,并停留2天.
(l)求此人到达当日空气重度污染的概率;
(2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
低碳生活,从“衣食住行”开始.在国内一些网站中出现了“碳足迹”的应用,人们可以由此计算出自己每天的碳排放量,如家居用电的二氧化碳排放量(千克)=耗电度数,家用天然气的二氧化碳排放量(千克)=天然气使用立方数等.某校开展“节能减排,保护环境,从我做起!”的活动,该校高一、六班同学利用假期在东城、西城两个小区进行了逐户的关于“生活习惯是否符合低碳排放标准”的调查.生活习惯符合低碳观念的称为“低碳家庭”,否则称为“非低碳家庭”.经统计,这两类家庭占各自小区总户数的比例数据如下:
(1)如果在东城、西城两个小区内各随机选择2个家庭,求这个家庭中恰好有两个家庭是“低碳家庭”的概率;
(2)该班同学在东城小区经过大力宣传节能减排的重要意义,每周“非低碳家庭”中有的家庭能加入到“低碳家庭”的行列中.宣传两周后随机地从东城小区中任选个家庭,记表示个家庭中“低碳家庭”的个数,求和.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
为防止山体滑坡,某地决定建设既美化又防护的绿化带,种植松树、柳树等植物.某人一次种植了n株柳树,各株柳树成活与否是相互独立的,成活率为p,设ξ为成活柳树的株数,数学期望E(ξ)=3,标准差σ(ξ)为.
(1)求n、p的值并写出ξ的分布列;
(2)若有3株或3株以上的柳树未成活,则需要补种,求需要补种柳树的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是,假设各局比赛结果相互独立.
(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;
(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分、对方得1分.求乙队得分X的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
现有甲、乙、丙三人参加某电视台的应聘节目《非你莫属》,若甲应聘成功的概率为,乙、丙应聘成功的概率均为,(0<t<2),且三个人是否应聘成功是相互独立的.
(1)若乙、丙有且只有一个人应聘成功的概率等于甲应聘成功的概率,求t的值;
(2)记应聘成功的人数为,若当且仅当为=2时概率最大,求E()的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知正方形ABCD的边长为2,E,F,G,H分别是边AB,BC,CD,DA的中点.
(1)从C,D,E,F,G,H这六个点中,随机选取两个点,记这两个点之间的距离的平方为,求概率P.
(2)在正方形ABCD内部随机取一点P,求满足的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知离散型随机变量ξ1的概率分布为
ξ1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P |
ξ2 | 3.7 | 3.8 | 3.9 | 4 | 4.1 | 4.2 | 4.3 |
P |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com