精英家教网 > 高中数学 > 题目详情

已知数列{an} 和{bn} 的通项分别为an=2n-1,bn=2n+1-1(n∈N*),集合A={x|x=an,n∈N*},B={x|x=bn,n∈N*},设D=CAB.将集合D中元素从小到大依次排列,构成数列d1,d2,d3,…,dn,….
(1)写出d1,d2,d3,d4
(2)求数列{dn}的前2012项的和;
(3)是否存在这样的无穷等差数列{cn}:使得Cn∈D(n∈N*)?若存在,请写出一个这样的数列,并加以证明;若不存在,请说明理由.

解:(1)∵an=2n-1,bn=2n+1-1,
∴a1=1,b1=3;a2=3,b2=7;a3=5,b3=15;
∴A={1,3,5,7,9,11,13,…2n-1},B={3,7,15,31,63,127,…2n+1-1},
∵D=CAB,集合D中元素从小到大依次排列,构成数列d1,d2,d3,…,dn,….
∴d1=1,d2=5,d3=9,d4=11;
(2)b1=3,b2=7,b3=15,…b10=2047,b11=4095,a2012=2×2012-1=4023,a2022=2n-1=4043
∴数列{dn}的前2012项的和为a1+a2+…+a2012-(b1+b2+…+b10)=20222-(212-14)=40402
(3)存在.如cn=6n-1(n∈N*),
证明:cn=6n-1=2×3n-1,n∈N*,所以3n∈N*,所以cn∈A
假设cn∈B,则存在实数k,6n-1=2k+1-1,所以n=(n∈N*),
由于上式左边为整数,右边为分数,所以上式不成立,所以假设不成立,所以cn∉B
所以cn∈D.即cn=6n-1(n∈N*)满足要求.
分析:(1)根据数列的通项,写出相应的项,由此可写出d1,d2,d3,d4
(2)数列{dn}的前2012项的和为数列{an}的前2012项的和减去{bn}的前10项的和,由此可得结论
(3)存在,列举一个cn=6n-1=2×3n-1,n∈N*,证明cn∈A,cn∉B即可.
点评:本题考查数列知识的综合,考查数量的通项与求和,解题的关键是理解数列的新定义,有难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足:a=1,a1=2,a2>0,bn=
a1an+1
(n∈N*)
.且{bn}是以
a为公比的等比数列.
(Ⅰ)证明:aa+2=a1a2
(Ⅱ)若a3n-1+2a2,证明数例{cx}是等比数例;
(Ⅲ)求和:
1
a1
+
1
a2
+
1
a3
+
1
a4
+
+
1
a2n-1
+
1
a2n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足a1=m,an+1an+n,bn=an-
2n
3
+
4
9

(1)当m=1时,求证:对于任意的实数λ,{an}一定不是等差数列;
(2)当λ=-
1
2
时,试判断{bn}是否为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和等比数列{bn}满足:a1=b1=4,a2=b2=2,a3=1,且数列{an+1-an}是等差数列,n∈N*
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)问是否存在k∈N*,使得ak-bk∈(
12
,3]
?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足:a1=λ,an+1=
23
an+n-4,bn=(-1)n(an-3n+21)其中λ为实数,且λ≠-18,n为正整数.
(Ⅰ)求证:{bn}是等比数列;
(Ⅱ)设0<a<b,Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•孝感模拟)已知数列{an}和{bn}满足a1=1且bn=1-2anbn+1=
bn
1-4 
a
2
n

(I)证明:数列{
1
an
}是等差数列,并求数列{an}的通项公式;
(Ⅱ)求使不等式(1+a1)(1+a2)…(1+an)≥k
1
b2b3bnbn+1 
对任意正整数n都成立的最大实数k.

查看答案和解析>>

同步练习册答案