分析 (Ⅰ)根据双曲线的标准方程是一正一负的关系即可求.
(Ⅱ)利用椭圆与双曲的交点相同,求出椭圆的方程,利用椭圆是的任一点到两个距离之和为2a,再加焦距可得△PF1F2的周长.
解答 解:(Ⅰ)根据双曲线的标准方程是一正一负的关系,
∴$\left\{\begin{array}{l}{a+4>0}\\{a+5<0}\end{array}\right.$或$\left\{\begin{array}{l}{a+4<0}\\{a+5>0}\end{array}\right.$,
解得:-5<a<-4.
所以方程$\frac{x^2}{a+4}$+$\frac{y^2}{a+5}$=1,表示双曲线,a的取值范围是(-5,-4).
(Ⅱ)由题意:椭圆与双曲的交点相同,
∴F1(-1,0),F2(1,0).即c=1.
∵椭圆C:x2+$\frac{y^2}{m}$=1(m>0),c=1.
∴a≠1,故而a=$\sqrt{m}$,b=1,焦点在y轴上.
∴m=$\sqrt{2}$.
又∵点P在椭圆C上,
∴△PF1F2的周长=2a+2c=$2\sqrt{2}+2$.
点评 本题考查了双曲线的标准方程的形式和椭圆的焦点c与a,b的关系以及椭圆的定义.属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向右平移$\frac{π}{6}$,横坐标缩短为原来的$\frac{1}{2}$ | |
| B. | 向右平移$\frac{π}{6}$,横坐标伸长为原来的2倍 | |
| C. | 向右平移$\frac{π}{3}$,横坐标缩短为原来的$\frac{1}{2}$ | |
| D. | 向右平移$\frac{π}{3}$,横坐标伸长为原来的2倍 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com