精英家教网 > 高中数学 > 题目详情
9.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)过点(0,1),离心率为$\frac{{\sqrt{3}}}{2}$,
(1)求椭圆的标准方程;
(2)过点(m,0)作圆x2+y2=1的切线l交椭圆G于A,B两点,将|AB|表示为m的函数,并求|AB|的最大值.

分析 (1)根据题意解出a,b即可;
(2)利用弦长公式把|AB|表示出来,然后利用基本不等式求解.

解答 解:(1)∵过点(0,1),∴b=1,
∴$\left\{\begin{array}{l}{b=1}\\{e=\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,
   解得:$\left\{\begin{array}{l}{a=2}\\{b=1}\\{c=\sqrt{3}}\end{array}\right.$,
所以椭圆的方程为:$\frac{{x}^{2}}{4}+{y}^{2}=1$.
(2)设l的方程x=py+m(m≤-1,m≥1,p=$\frac{1}{k}$),
d=$\frac{|m|}{\sqrt{1+{p}^{2}}}$,∴m2=p2+1,
由$\left\{\begin{array}{l}{x=py+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,∴(p2+4)y2+2pmy+m2-4=0,
∴$\left\{\begin{array}{l}{{y}_{1}+{y}_{2}=-\frac{2pm}{{p}^{2}+4}}\\{{y}_{1}{y}_{2}=\frac{{m}^{2}-4}{{p}^{2}+4}}\end{array}\right.$,
∴|AB|=$\sqrt{1+{p}^{2}}$$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\frac{4\sqrt{3}|m|}{{m}^{2}+3}$=$\frac{4\sqrt{3}}{|m|+\frac{3}{|m|}}$$≤\frac{4\sqrt{3}}{2|m|\frac{3}{|m|}}$=2,
所以|AB|的最大值为2.

点评 本题主要考查椭圆的标准方程和弦长公式,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若抛物线y2=2x上有两点A、B,且AB垂直于x轴,若|AB|=2$\sqrt{2}$,则点A到抛物线的准线的距离为(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).

(Ⅰ)求样本容量n和频率分布直方图中y的值;
(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到市政广场参加环保知识宣传的志愿者活动,求所抽取的人中至少有一个同学的成绩在[90,100]的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={y|y=$\frac{|x|}{x}$(x≠0)},B={x|-1≤x≤2},则(  )
A.A⊆BB.B⊆AC.A=BD.A∩B=∅

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)是定义在[-1,1]上的奇函数,且函数f(x)在定义域上单调递减,求不等式f(3-x)+f(2x-7)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知方程$\frac{x^2}{a+4}$+$\frac{y^2}{a+5}$=1
(Ⅰ)若方程表示双曲线,求a的取值范围;
(Ⅱ)设(Ⅰ)中的双曲线的两个焦点为F1,F2,若椭圆C:x2+$\frac{y^2}{m}$=1(m>0)的两个焦点也为F1,F2,且点P在椭圆C上,求△PF1F2的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知命题p:直线x-y+a=0与圆x2+y2-2x=1相交; 命题q:曲线y=ex-ax(e 为自然对数的底数)在任意一点处的切线斜率均大于1.若命题p∧(¬q)是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=(m2-m-1)x${\;}^{{m}^{2}-2m-1}$是幂函数,在(0,+∞)是增函数,则实数m=(  )
A.-1B.2C.2或-1D.0或2或-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图所示,一个几何体的正视图和侧视图都是边长为2的正方形,俯视图是一个直径为2的圆,则这个几何体的全面积是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案