精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)是定义在[-1,1]上的奇函数,且函数f(x)在定义域上单调递减,求不等式f(3-x)+f(2x-7)>0的解集.

分析 根据函数奇偶性和单调性的关系将不等式进行转化求解即可.

解答 解:∵函数奇函数f(x)的定义域为[-1,1],且在定义域上单调递减,
∴不等式f(3-x)+f(2x-7)>0等价为f(2x-7)>-f(3-x)=f(x-3),
即$\left\{\begin{array}{l}{-1≤3-x≤1}\\{-1≤2x-7≤1}\\{2x-7<x-3}\end{array}\right.$,
即$\left\{\begin{array}{l}{2≤x≤4}\\{3≤x≤4}\\{x<4}\end{array}\right.$,
得3≤x<4,
故不等式的解集为[3,4).

点评 本题主要考查不等式的求解,根据函数奇偶性将不等式进行转化是解决本题的关键.注意定义域的限制.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知全集U=R,集合A={x|-1<x<1},B={x|x2+2x≤0},则A∩B=(  )
A.(-1,0]B.[-2,1)C.[-2,-1)D.[0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知实数x,y满足$\left\{\begin{array}{l}x-2y≥0\\ x+y-3≤0\\ y≥0\end{array}\right.,则(x-2)_{\;}^2+(y+3)_{\;}^2$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某程序框图如图所示,若该程序运行后输出k的值是6,则输入的整数S0的可能值为(  )
A.5B.6C.8D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(\frac{1}{x}+2)$的定义域是{x|-1≤x≤3且x≠0},则函数f(x+2)的定义域为(  )
A.{x|-3≤x≤1且x≠-2}B.$\{x|x≤-1或x≥\frac{1}{3}\}$C.{x|-1≤x≤3且x≠0}D.$\{x|-1≤x≤\frac{1}{3}且x≠0\}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)过点(0,1),离心率为$\frac{{\sqrt{3}}}{2}$,
(1)求椭圆的标准方程;
(2)过点(m,0)作圆x2+y2=1的切线l交椭圆G于A,B两点,将|AB|表示为m的函数,并求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知:椭圆C过点A(1,$\frac{3}{2}$),两个焦点为(-1,0),(1,0).
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE和AF关于x=1对称,证明直线EF的斜率为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知cosα=$\frac{4}{5}$,cosβ=$\frac{3}{5}$,β∈($\frac{3π}{2}$,2π),且0<α<β,则sin(α+β)的值为(  )
A.1B.-1C.-$\frac{7}{25}$D.-1或-$\frac{7}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.等差数列{an}中,若a5=6,a3=2,则公差为(  )
A.2B.1C.-2D.-1

查看答案和解析>>

同步练习册答案