精英家教网 > 高中数学 > 题目详情
19.已知函数$f(\frac{1}{x}+2)$的定义域是{x|-1≤x≤3且x≠0},则函数f(x+2)的定义域为(  )
A.{x|-3≤x≤1且x≠-2}B.$\{x|x≤-1或x≥\frac{1}{3}\}$C.{x|-1≤x≤3且x≠0}D.$\{x|-1≤x≤\frac{1}{3}且x≠0\}$

分析 由题意可得$\frac{1}{x}$+2≤1或$\frac{1}{x}$+2≥$\frac{7}{3}$,可得f(x)的定义域,再令t=x+2,可得t≤1或t≥$\frac{7}{3}$,解x的不等式即可得到所求定义域.

解答 解:函数$f(\frac{1}{x}+2)$的定义域是{x|-1≤x≤3且x≠0},
可得$\frac{1}{x}$≤-1或$\frac{1}{x}$≥$\frac{1}{3}$,
即可得$\frac{1}{x}$+2≤1或$\frac{1}{x}$+2≥$\frac{7}{3}$,
即f(x)的定义域为{x|x≤1或x≥$\frac{7}{3}$},
令t=x+2,可得t≤1或t≥$\frac{7}{3}$,
即x+2≤1或x+2≥$\frac{7}{3}$,
解得x≤-1或x≥$\frac{1}{3}$.
故选:B.

点评 本题考查抽象函数的定义域的求法,注意运用换元法和定义域的含义,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.不等式组x,y满足$\left\{\begin{array}{l}{2x+3y≤0}\\{x-y≥0}\\{y≥-2}\end{array}\right.$,所围成的平面区域面积是(  )
A.3B.$\frac{3}{2}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H.则以下命题中,真命题的编号是①②③(写出所有真命题的编号)
①点H是△A1BD的垂心    
②AH垂直平面CB1D1
③AH的延长线经过点C1
④直线AH和BB1所成角为45°
⑤平面A1BD与底面A1B1C1D1所成的角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知双曲线的方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,点A、B在双曲线的右支上,线段AB经过双曲线的右焦点F2,AB=m,F1为另一焦点,则△ABF1的周长为4a+2m.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$|\overrightarrow a|=5,\overrightarrow b=(6,8)$,满足$\overrightarrow a∥\overrightarrow b且\overrightarrow a≠\overrightarrow b$,则$\overrightarrow a$=(3,4),或(-3,-4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)是定义在[-1,1]上的奇函数,且函数f(x)在定义域上单调递减,求不等式f(3-x)+f(2x-7)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若奇函数f(x)=xcosx+c的定义域为[a,b],则a+b+c=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知圆C:x2+y2=1,过第一象限内一点P(a,b)作圆C的两条切线,且点分别为A、B,若∠APB=60°,O为坐标原点,则OP的长为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设复数z满足(1+i)•z=1-2i3(i为虚数单位),则复数z对应的点位于复平面内(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案