精英家教网 > 高中数学 > 题目详情
8.已知圆C:x2+y2=1,过第一象限内一点P(a,b)作圆C的两条切线,且点分别为A、B,若∠APB=60°,O为坐标原点,则OP的长为(  )
A.1B.2C.3D.4

分析 利用∠APB=60°,∠APO=30°,得出|PO|=2|OB|,即可得出结论.

解答 解:∵P(a,b),∴|PO|=$\sqrt{{a}^{2}+{b}^{2}}$(a>0,b>0)
∵∠APB=60°,
∴∠APO=30°,
∴|PO|=2|OB|=2.
故选B.

点评 本题考查直线与圆的位置关系,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)为偶函数,且当x≤0时,f(x)=ex-$\frac{1}{x-1}$,若f(-a)+f(a)≤2f(1),则实数a取值范围是(  )
A.(-∞,-1]∪[1,+∞)B.[-1,0]C.[0,1]D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(\frac{1}{x}+2)$的定义域是{x|-1≤x≤3且x≠0},则函数f(x+2)的定义域为(  )
A.{x|-3≤x≤1且x≠-2}B.$\{x|x≤-1或x≥\frac{1}{3}\}$C.{x|-1≤x≤3且x≠0}D.$\{x|-1≤x≤\frac{1}{3}且x≠0\}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知:椭圆C过点A(1,$\frac{3}{2}$),两个焦点为(-1,0),(1,0).
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE和AF关于x=1对称,证明直线EF的斜率为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设函数f(x)=|2x-1|的定义域和值域都是[a,b](b>a),则f(a)+f(b)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知cosα=$\frac{4}{5}$,cosβ=$\frac{3}{5}$,β∈($\frac{3π}{2}$,2π),且0<α<β,则sin(α+β)的值为(  )
A.1B.-1C.-$\frac{7}{25}$D.-1或-$\frac{7}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π,x∈R)的部分图象如图所示,则函数表达式为f(x)=2sin(2x-$\frac{5π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.直线xsin 30°+ycos 150°+1=0的斜率是(  )
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.-$\sqrt{3}$D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(2,1),则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为(  )
A.2B.5$\sqrt{2}$C.2$\sqrt{5}$D.5

查看答案和解析>>

同步练习册答案