精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)为偶函数,且当x≤0时,f(x)=ex-$\frac{1}{x-1}$,若f(-a)+f(a)≤2f(1),则实数a取值范围是(  )
A.(-∞,-1]∪[1,+∞)B.[-1,0]C.[0,1]D.[-1,1]

分析 利用偶函数的性质将不等式等价转化,由基本初等函数和复合函数的单调性,判断出f(x)在(-∞,0]上单调性,由偶函数的性质判断出在[0,+∞)上的单调性,由单调性列出不等式,求出a的取值范围.

解答 解:∵函数f(x)是定义在R上的偶函数,
∴不等式f(a)+f(-a)≤2f(1)等价为2f(a)≤2f(1),
即f(a)≤f(1),
∴等价为f(|a|)≤f(1),
∵当x≤0时,f(x)=ex-$\frac{1}{x-1}$,
∴f(x)在区间(-∞,0]上单调递增,
∴偶函数f(x)在区间[0,+∞)上单调递减,
∴|a|≥1,即a≤-1或a≥1,
则实数a取值范围是(-∞,-1]∪[1,+∞),
故选:A.

点评 本题考查了函数的奇偶性和单调性,基本初等函数的单调性,利用函数奇偶性的性质、单调性将不等式等价转化是解题的关键,考查了函数思想、转化思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=loga(x2-2ax)(a>0且a≠1)满足对任意的x1,x2∈[3,4],且x1≠x2时,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0成立,则实数a的取值范围是(1,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.不等式组x,y满足$\left\{\begin{array}{l}{2x+3y≤0}\\{x-y≥0}\\{y≥-2}\end{array}\right.$,所围成的平面区域面积是(  )
A.3B.$\frac{3}{2}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.100个个体分成10组,编号后分别为第1组:00,01,02,…,09;第2组:10,11,12,…,19;…;第10组“90,91,92,…,99.抽取规则如下,第k组中抽取的号码的个位数与(k+m-1)的个位数相同,其中m是第1组随机抽取的号码的个位数,则方m=5时,从第8组中抽取的号码是72.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=$\sqrt{2}$,AF=2BF,若CE与圆相切,且CE=$\frac{\sqrt{7}}{2}$,则BE的长为(  )
A.1B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2sinxcosx+2cos2x-1.
(1)求f(x)的最大值及取得最大值时x的集合;
(2)若锐角三角形ABC的三个内角A,B,C的对边分别为a,b,c,且$f(\frac{A}{2})=\sqrt{2},a=2$,$b=\sqrt{6}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H.则以下命题中,真命题的编号是①②③(写出所有真命题的编号)
①点H是△A1BD的垂心    
②AH垂直平面CB1D1
③AH的延长线经过点C1
④直线AH和BB1所成角为45°
⑤平面A1BD与底面A1B1C1D1所成的角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知双曲线的方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,点A、B在双曲线的右支上,线段AB经过双曲线的右焦点F2,AB=m,F1为另一焦点,则△ABF1的周长为4a+2m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知圆C:x2+y2=1,过第一象限内一点P(a,b)作圆C的两条切线,且点分别为A、B,若∠APB=60°,O为坐标原点,则OP的长为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案