分析 (1)根据二倍角的正余弦公式和两角和的正弦公式即可得出$f(x)=\sqrt{2}sin(2x+\frac{π}{4})$,从而便可求出f(x)的最大值及取最大值时x的集合;
(2)根据$f(\frac{A}{2})=\sqrt{2}$及A为锐角即可求出A=$\frac{π}{4}$,进而根据正弦定理即可求出sinB,从而得出B的值,这样根据sinC=sin(A+B)=sinAcosB+cosAsinB即可求出sinC,最后根据三角形面积公式即可求出△ABC的面积.
解答 解:(1)f(x)=2sinxcosx+2cos2x-1=$sin2x+cos2x=\sqrt{2}sin(2x+\frac{π}{4})$;
∴$2x+\frac{π}{4}=\frac{π}{2}+2kπ$,k∈Z,即x=$\frac{π}{8}+kπ$,k∈Z时,f(x)取最大值$\sqrt{2}$;
∴f(x)的最大值为$\sqrt{2}$,取最大值时x的集合为$\{x|x=\frac{π}{8}+kπ,k∈Z\}$;
(2)$f(\frac{A}{2})=\sqrt{2}sin(A+\frac{π}{4})=\sqrt{2}$;
∴$sin(A+\frac{π}{4})=1$;
又A为锐角;
∴$A+\frac{π}{4}=\frac{π}{2}$,$A=\frac{π}{4}$;
∴在△ABC中,A=$\frac{π}{4}$,$a=2,b=\sqrt{6}$,由正弦定理得:$\frac{2}{\frac{\sqrt{2}}{2}}=\frac{\sqrt{6}}{sinB}$;
∴$sinB=\frac{\sqrt{3}}{2}$;
∴$B=\frac{π}{3}$;
∴sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{\sqrt{2}}{2}×\frac{1}{2}+\frac{\sqrt{2}}{2}×\frac{\sqrt{3}}{2}=\frac{\sqrt{2}+\sqrt{6}}{4}$;
∴${S}_{△ABC}=\frac{1}{2}absinC$
=$\frac{1}{2}×2×\sqrt{6}×\frac{\sqrt{2}+\sqrt{6}}{4}$
=$\frac{\sqrt{3}+3}{2}$.
点评 考查二倍角的正余弦公式,两角和的正弦公式,以及正弦函数的最大值,以及对应的x的取值,已知三角函数值求角,正弦定理,三角形面积公式.
科目:高中数学 来源: 题型:选择题
| A. | (-1,0] | B. | [-2,1) | C. | [-2,-1) | D. | [0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1]∪[1,+∞) | B. | [-1,0] | C. | [0,1] | D. | [-1,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | -$\frac{7}{25}$ | D. | -1或-$\frac{7}{25}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com