精英家教网 > 高中数学 > 题目详情
8.在△ABC中,内角A,B,C的对边分别为a,b,c,已知acos2$\frac{C}{2}$+ccos2$\frac{A}{2}$=$\frac{3}{2}$b.
(Ⅰ)若b2=ac,判断△ABC的形状.
(Ⅱ)求cos(A+C)+$\sqrt{3}$sinB的取值范围..

分析 (Ⅰ)由正弦定理化简已知,利用三角函数恒等变换的应用可得sinA+sinC=2sinB,由正弦定理得a+c-2b=0,可得a,b,c三边成等差数列,又a,b,c三边成等比数列,从而a,b,c为常数列,可得△ABC为等边三角形.
(Ⅱ)由余弦定理结合(Ⅰ)得a+c=2b,可得$\frac{3(a+c)^{2}}{4}$=2ac(1+cosB),结合基本不等式可得2ac(1+cosB)≥3ac,利用三角函数恒等变换的应用可得cos(A+C)+$\sqrt{3}$sinB=2sin(B-$\frac{π}{6}$),由B∈(0,$\frac{π}{3}$],可得B-$\frac{π}{6}$的范围,利用正弦函数的性质可求cos(A+C)+$\sqrt{3}$sinB的取值范围.

解答 解:(Ⅰ)由正弦定理得sinAcos2$\frac{C}{2}$+sinCcos2$\frac{A}{2}$=$\frac{3}{2}$sinB,
即sinA$\frac{1+cosC}{2}$+sinC$\frac{1+cosA}{2}$=$\frac{3}{2}$sinB,
所以:sinA+sinC+sinAcosC+cosAsinC=3sinB,
即sinA+sinC+sin(A+C)=3sinB,
因为sin(A+C)=sinB,
所以sinA+sinC=2sinB,
由正弦定理得a+c-2b=0,
∴a,b,c三边成等差数列,
又b2=ac,
∴a,b,c三边成等比数列,从而a,b,c为常数列,
∴△ABC为等边三角形.
(Ⅱ)由余弦定理有b2=a2+c2-2accosB=(a+c)2-2ac(1+cosB),
由(Ⅰ)得a+c=2b,
所以    $\frac{(a+c)^{2}}{4}$=(a+c)2-2ac(1+cosB),
即:$\frac{3(a+c)^{2}}{4}$=2ac(1+cosB),又a+c≥2$\sqrt{ac}$,
∴2ac(1+cosB)≥3ac,
∴cosB$≥\frac{1}{2}$,从而B∈(0,$\frac{π}{3}$],
cos(A+C)+$\sqrt{3}$sinB=$\sqrt{3}$sinB-cosB=2sin(B-$\frac{π}{6}$),
∵0$<B≤\frac{π}{3}$,可得:-$\frac{π}{6}$<B-$\frac{π}{6}$≤-$\frac{π}{6}$,
∴$-\frac{1}{2}$<sin(B-$\frac{π}{6}$)$≤\frac{1}{2}$,可得:-1<2sin(B-$\frac{π}{6}$)≤1,
即cos(A+C)+$\sqrt{3}$sinB的取值范围(-1,1].

点评 本题主要考查的考点有:1.三角变换;2.正弦定理,余弦定理;3.基本不等式;4.三角函数在给定区间上的值域问题,考查了转化思想和数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=ax2+bx+c的图象如图所示,则下列结论不正确的是(  )
A.4a-2b+c=0B.c<-2aC.a+b+c<0D.a≤b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若抛物线y2=2x上有两点A、B,且AB垂直于x轴,若|AB|=2$\sqrt{2}$,则点A到抛物线的准线的距离为(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l:y=x+2与圆x2+y2=6相交的弦长为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长,且椭圆的离心率为$\frac{1}{2}$,若抛物线C:y2=2px的焦点与椭圆的焦点重合.
(1)求该椭圆的方程和抛物线的方程
(2).若过抛物线C的焦点且与直线l平行的直线交抛物线于M,N两点,点P为直线l上的动点,试求$\overrightarrow{PM}$$•\overrightarrow{PN}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2sinxcosx+2cos2x-1.
(1)求f(x)的最大值及取得最大值时x的集合;
(2)若锐角三角形ABC的三个内角A,B,C的对边分别为a,b,c,且$f(\frac{A}{2})=\sqrt{2},a=2$,$b=\sqrt{6}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若要使如图程序框图输出的s值是$\frac{50}{51}$,其中菱形判断框内填入的条件是(  )
A.i=0B.i>50C.i≥51D.i≥50

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).

(Ⅰ)求样本容量n和频率分布直方图中y的值;
(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到市政广场参加环保知识宣传的志愿者活动,求所抽取的人中至少有一个同学的成绩在[90,100]的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={y|y=$\frac{|x|}{x}$(x≠0)},B={x|-1≤x≤2},则(  )
A.A⊆BB.B⊆AC.A=BD.A∩B=∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=(m2-m-1)x${\;}^{{m}^{2}-2m-1}$是幂函数,在(0,+∞)是增函数,则实数m=(  )
A.-1B.2C.2或-1D.0或2或-1

查看答案和解析>>

同步练习册答案