16£®ÒÑÖªÖ±Ïßl£ºy=x+2ÓëÔ²x2+y2=6ÏཻµÄÏÒ³¤ÎªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ³¤Ö᳤£¬ÇÒÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬ÈôÅ×ÎïÏßC£ºy2=2pxµÄ½¹µãÓëÍÖÔ²µÄ½¹µãÖØºÏ£®
£¨1£©Çó¸ÃÍÖÔ²µÄ·½³ÌºÍÅ×ÎïÏߵķ½³Ì
£¨2£©£®Èô¹ýÅ×ÎïÏßCµÄ½¹µãÇÒÓëÖ±ÏßlƽÐеÄÖ±Ïß½»Å×ÎïÏßÓÚM£¬NÁ½µã£¬µãPΪֱÏßlÉϵ͝µã£¬ÊÔÇó$\overrightarrow{PM}$$•\overrightarrow{PN}$µÄ×îСֵ£®

·ÖÎö £¨1£©Ô²Ðĵ½Ö±ÏߵľàÀëΪd=$\sqrt{2}$£¬ÏÒ³¤Îª2$\sqrt{{r}^{2}-{d}^{2}}$£¬¿ÉÖª2a=4£¬ÓÖ$\frac{c}{a}$=$\frac{1}{2}$£¬b2=a2-c2£¬ÁªÁ¢½â³ö¼´¿ÉµÃ³ö
£¨2£©¹ý½¹µãFµÄÖ±ÏßΪy=x-1£¬ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬P£¨x0£¬x0+2£©£®Ö±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£ºx2-6x+1=0£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¼°ÆäÊýÁ¿»ýÔËËãÐÔÖʿɵãº$\overrightarrow{PM}$•$\overrightarrow{PN}$=$2{x}_{0}^{2}$-6x0-7£¬ÔÙÀûÓöþ´Îº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©Ô²Ðĵ½Ö±ÏߵľàÀëΪd=$\frac{|0+2|}{\sqrt{2}}$=$\sqrt{2}$£¬r=$\sqrt{6}$£®
ÏÒ³¤Îª2$\sqrt{{r}^{2}-{d}^{2}}$=2$\sqrt{6-2}$=4£¬¿ÉÖª2a=4£¬ÓÖ$\frac{c}{a}$=$\frac{1}{2}$£¬b2=a2-c2£¬
ÁªÁ¢½âµÃa=2£¬c=1£¬b2=3£®
ËùÇóµÄÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1£¬½¹µãΪF£¨1£¬0£©£¬
¡à$\frac{p}{2}$=1£¬½âµÃp=2£®
¡àÅ×ÎïÏߵķ½³ÌΪ£ºy2=4x£®
£¨2£©¹ý½¹µãFµÄÖ±ÏßΪy=x-1£¬ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬P£¨x0£¬x0+2£©£®
ÁªÁ¢$\left\{\begin{array}{l}{{y}^{2}=4x}\\{y=x-1}\end{array}\right.$£¬»¯Îª£ºx2-6x+1=0£¬
¡àx1+x2=6£¬x1•x2=1£¬
¡à$\overrightarrow{PM}$•$\overrightarrow{PN}$=£¨x1-x0£¬y1-x0-2£©•£¨x2-x0£¬y2-x0-2£©=£¨x1-x0£©£¨x2-x0£©+£¨y1-x0-2£©£¨y2-x0-2£©
=x1x2-£¨x1+x2£©x0+${x}_{0}^{2}$+y1y2-£¨x0+2£©£¨y1+y2£©+$£¨{x}_{0}+2£©^{2}$
=1-6x0+${x}_{0}^{2}$-4-4£¨x0+2£©+$£¨{x}_{0}+2£©^{2}$
=$2{x}_{0}^{2}$-6x0-7
=2$£¨{x}_{0}-\frac{3}{2}£©^{2}$-$\frac{23}{2}$£¬
¡àx0=$\frac{3}{2}$ʱ£¬×îСֵΪ-$\frac{23}{2}$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²ÓëÅ×ÎïÏߵıê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢ÊýÁ¿»ýÔËËãÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖª¼¯ºÏA={1£¬2}£¬¼¯ºÏBÂú×ãA¡ÈB=A£¬Ôò¼¯ºÏBÓÐ4¸ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Çó¸Ã¼¸ºÎÌåµÄ±íÃæ»ýºÍÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ÀâÖùABCD-A1B1C1D1µÄËùÓÐÀⳤ¶¼µÈÓÚ2£¬¡ÏABC=¡ÏA1AC=60¡ã£¬Æ½ÃæAA1CC1¡ÍÆ½ÃæABCD£®
£¨1£©Ö¤Ã÷£ºBD¡ÍAA1
 £¨2£©Çó¶þÃæ½ÇD-AA1-C£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=$\frac{A}{2}$sin£¨¦Øx+ϕ£©ÔÚÒ»¸öÖÜÆÚÄÚµÄͼÏóÈçͼ£¬Ôòº¯Êýf£¨x£©µÄ½âÎöʽΪy=2sin£¨2x+$\frac{2¦Ð}{3}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªÏòÁ¿$\overrightarrow a=£¨-1£¬x£©$£¬$\overrightarrow b=£¨2£¬y£©$ÇÒ$\overrightarrow a¡Í\overrightarrow b$£¬Ôò|$\overrightarrow a+\overrightarrow b|$µÄ×îСֵΪ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÒÑÖªacos2$\frac{C}{2}$+ccos2$\frac{A}{2}$=$\frac{3}{2}$b£®
£¨¢ñ£©Èôb2=ac£¬Åжϡ÷ABCµÄÐÎ×´£®
£¨¢ò£©Çócos£¨A+C£©+$\sqrt{3}$sinBµÄȡֵ·¶Î§£®£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®PΪԲ׶ÇúÏßÉÏÒ»µã£¬F1¡¢F2·Ö±ðΪ×ó¡¢ÓÒ½¹µã£¬|PF1|£º|F1F2|£º|PF2|=4£º3£º2£¬Ôò¸ÃÔ²×¶ÇúÏßµÄÀëÐÄÂÊe=$\frac{1}{2}$»ò$\frac{3}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=asinx+cosxÂú×ãf£¨$\frac{¦Ð}{3}$+x£©=f£¨$\frac{¦Ð}{3}$-x£©¶Ôx¡ÊRºã³ÉÁ¢£¬ÔòÒªµÃµ½g£¨x£©=2sin2xµÄͼÏó£¬Ö»Ðè°Ñf£¨x£©µÄͼÏ󣨡¡¡¡£©
A£®ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$£¬ºá×ø±êËõ¶ÌΪԭÀ´µÄ$\frac{1}{2}$
B£®ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$£¬ºá×ø±êÉ쳤ΪԭÀ´µÄ2±¶
C£®ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{3}$£¬ºá×ø±êËõ¶ÌΪԭÀ´µÄ$\frac{1}{2}$
D£®ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{3}$£¬ºá×ø±êÉ쳤ΪԭÀ´µÄ2±¶

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸