分析 由向量垂直的条件得到xy=2.从而|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{(-1+2)^{2}+(x+y)^{2}}$=$\sqrt{{x}^{2}+{y}^{2}+13}$≥$\sqrt{2xy+12}$,由此能求出|$\overrightarrow{a}+\overrightarrow{b}$|的最小值.
解答 解:∵向量$\overrightarrow a=(-1,x)$,$\overrightarrow b=(2,y)$且$\overrightarrow a⊥\overrightarrow b$,
∴$\overrightarrow{a}•\overrightarrow{b}$=-2+xy=0,即xy=2.
∴|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{(-1+2)^{2}+(x+y)^{2}}$
=$\sqrt{9+{x}^{2}+{y}^{2}+4}$
=$\sqrt{{x}^{2}+{y}^{2}+13}$
≥$\sqrt{2xy+12}$
=$\sqrt{16}$
=4.
∴|$\overrightarrow{a}+\overrightarrow{b}$|的最小值为4.
故答案为:4.
点评 本题考查向量的模的最小值的求法,是基础题,解题时要认真审题,注意向量垂直的性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | (-2,2) | C. | (-1,2) | D. | [-2,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平移$\frac{π}{3}$个单位 | B. | 向右平移$\frac{π}{3}$个单位 | ||
| C. | 向右平移$\frac{π}{6}$个单位 | D. | 向左平移$\frac{π}{6}$个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | i=0 | B. | i>50 | C. | i≥51 | D. | i≥50 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com