分析 由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,从而求得函数的解析式.
解答 解:由函数的图象可得A=4,$\frac{T}{2}=\frac{π}{ω}=\frac{5}{12}π+\frac{π}{12}=\frac{π}{2}$,∴ω=2,
再由五点法作图可得2(-$\frac{π}{12}$)+φ=$\frac{π}{2}$,∴φ=$\frac{2π}{3}$,
故函数的解析式为 函数y=2sin(2x+$\frac{2π}{3}$),
故答案为y=2sin(2x+$\frac{2π}{3}$).
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 关于y轴对称 | B. | 关于原点对称 | C. | 关于x轴对称 | D. | 关于y=x轴对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com