精英家教网 > 高中数学 > 题目详情
10.如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H.则以下命题中,真命题的编号是①②③(写出所有真命题的编号)
①点H是△A1BD的垂心    
②AH垂直平面CB1D1
③AH的延长线经过点C1
④直线AH和BB1所成角为45°
⑤平面A1BD与底面A1B1C1D1所成的角为60°.

分析 首先,判断三棱锥 A-BA1D为正三棱锥,然后,得到△BA1D为正三角形,得到H为A在平面A1BD内的射影,然后,根据平面A1BD与平面B1CD1平行,得到选项B正确,最后,结合线面角和对称性求解

解答 解:∵AB=AA1=AD,
BA1=BD=A1D,
∴三棱锥 A-BA1D为正三棱锥,
∴点H是△A1BD的垂心;
故①为真命题;
∵平面A1BD与平面B1CD1平行,
∵AH⊥平面A1BD,
∵平面A1BD⊥平面BC1D,
∴AH垂直平面CB1D1
故②为真命题;
根据正方体的对称性得到
AH的延长线经过C1
故③为真命题
对于选项C,
∵AA1∥BB1
∴∠A1AH就是直线AH和BB1所成角,
在直角三角形AHA1中,
∵AA1=1,A1H=$\frac{2}{3}$×$\frac{\sqrt{3}}{2}$×$\sqrt{2}$=$\frac{\sqrt{6}}{3}$,
∴sin∠A1AH=$\frac{\sqrt{6}}{3}$,
故④为假命题;
AH与底面A1B1C1D1所成的角θ满足sinθ=$\frac{\sqrt{3}}{3}$,
∴θ=arcsin$\frac{\sqrt{3}}{3}$,
由AH垂直平面A1BD,
可得平面A1BD与底面A1B1C1D1所成的角为90°-arcsin$\frac{\sqrt{3}}{3}$≠60°.
故⑤为假命题;
故答案为:①②③.

点评 本题以命题的真假判断与应用为载体,考查了正方体的几何特征,线面垂直,直线与平面的夹角,二面角等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)过点(2,3),且右焦点为圆C:(x-2)2+y2=2的圆心.
(1)求椭圆E的标准方程;
(2)设P是椭圆E上在y轴左侧的一点,过点P作圆C的两条切线,切点分别为A、B,且两切线的斜率之积为$\frac{1}{2}$,求△PAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=lnx-px+1,p为常数(p>0),$g(x)=\frac{3}{2}a{x^2}-xlnx-(3a-1)x+\frac{3}{2}a-1$.
(1)若对任意的x>0,恒有f(x)≤0,求p的取值范围;
(2)对任意的x∈[1,+∞),函数g(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)为偶函数,且当x≤0时,f(x)=ex-$\frac{1}{x-1}$,若f(-a)+f(a)≤2f(1),则实数a取值范围是(  )
A.(-∞,-1]∪[1,+∞)B.[-1,0]C.[0,1]D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.等差数列{an}的前n项之和为Sn,${b}_{n}=\frac{1}{{S}_{n}}$,且${a}_{3}{b}_{3}=\frac{1}{2}$,S3+S5=21.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{bn}的通项公式;
(Ⅲ)求证:b1+b2+b3+…+bn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知实数x,y满足$\left\{\begin{array}{l}x-2y≥0\\ x+y-3≤0\\ y≥0\end{array}\right.,则(x-2)_{\;}^2+(y+3)_{\;}^2$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.曲线y=xex+2x+1在点(0,1)处的切线方程为(  )
A.x∈RB.y=3x+1C.x∈RD.x∈R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(\frac{1}{x}+2)$的定义域是{x|-1≤x≤3且x≠0},则函数f(x+2)的定义域为(  )
A.{x|-3≤x≤1且x≠-2}B.$\{x|x≤-1或x≥\frac{1}{3}\}$C.{x|-1≤x≤3且x≠0}D.$\{x|-1≤x≤\frac{1}{3}且x≠0\}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π,x∈R)的部分图象如图所示,则函数表达式为f(x)=2sin(2x-$\frac{5π}{6}$).

查看答案和解析>>

同步练习册答案